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1. Introduction

Liouville conformal field theory plays a central role in two-dimensional gravity and string

theory as well as in our present understanding of conformal field theories with continuous

spectrum. When rendered N = 2 supersymmetric, it becomes a building block for super-

symmetric string backgrounds. We further study N = 2 superconformal Liouville theory

with boundary in this paper, and concentrate in particular on exhibiting bound states on

non-compact branes.

In a separate development, an intuitive description of large parts of gauge theory

physics has been given in terms of brane set-ups (see e.g. [1 – 3]). We believe it is an

interesting task to study descriptions of brane set-ups that are valid at all energy scales.

It further brings to bare string theory techniques in gauge theory physics and vice versa.

For instance, one may suspect that world-sheet N = 2 holomorphy will turn out to be a

useful alternative tool to analyze space-time physics.

The analysis of D-branes in Neveu-Schwarz five-brane backgrounds [4] was revisited

in [5] using the tools developed to solve non-rational conformal field theories. It was

argued how to realize brane set-ups [1] in terms of boundary conformal field theories (see

also [6, 7]).

In this paper we wish to analyze in more detail than in [5] how a D-brane behaves

in the close neighborhood of NS5-branes. We will study a particular set-up where the

NS5-branes are evenly arranged on a topologically trivial circle. We will see how target

space physics is coded in intricate properties of N = 2 Liouville theory with boundary.

In section 2 we lay bare the relevant properties of N = 2 Liouville theory with boundary,

which include new relations between formal boundary states as well as the appearance of

bound states in boundary spectra. In section 3 we review briefly the bulk conformal field

theory. We construct D-branes in the full superstring theory in section 4, and analyze their

spectrum. In section 5 we give a space-time interpretation of the conformal field theory

results of section 2. In particular we show the appearance of light bound states on the

world-volume of non-compact D-branes as they approach NS5-branes. We also describe

the cutting of D-branes as they hit NS5-branes. We analyze the gauge theory excitations

living deep inside the triply scaled throat in section 6. In section 7 we discuss a special case

with more symmetry allowing us to make a crosscheck, and we conclude with a summary

and suggestions for further developments in section 8. Various detailed calculations are

gathered in the appendices for the benefit of the indefatigable reader.

2. Addition relations and bound states on the boundary

We first analyze aspects of N = 2 Liouville theory with boundary (see e.g. [7 – 11]).

We will derive new addition relations between boundary states, and show the appear-

ance of normalizable boundary vertex operators as bound states on non-compact branes.
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2.1 Unitary representations of the N = 2 superconformal algebra

We take the central charge of our N = 2 Liouville model to be

c = 3 +
6

k
(2.1)

where k is a strictly positive integer. States in N = 2 Liouville theory can be organized in

representations of the N = 2 superconformal algebra. The characters of the representations

can be obtained as coset characters from theN = 1 superconformal extension of an SL(2,R)

current algebra [12] after gauging a compact U(1) subalgebra. In the following we use the

SL(2,R) quantum numbers to label the representations of the N = 2 superconformal

algebra. After descent in the NS-sector, the primary state with Casimir and U(1) labels

(J,m) has conformal dimension h and U(1)R charge Q determined by the formulas:

h = −J(J − 1)

k
+
m2

k
, Q =

2m

k
(2.2)

We take the R-charge Q to be quantized such that 2m ∈ Z.

We have different families of unitary representations:

• Continuous characters (0 ≤ J ≤ 1
2 or J = 1

2 + iP , P ∈ R
+; m generic):

chc(J,m; τ, z) = q−
J(J−1)

k
+ m2

k
− 1

4k y
2m
k
θ3(τ, z)

η3(τ)
(2.3)

These representations have no null vectors. The parent SL(2,R) representation has

a spectrum for a compact generator which is doubly infinite.

• Discrete representations (J = 1
2 , 1, . . . ,

k+1
2 ; m = J + r, r ∈ Z ):

chd(J, r; τ, z) = q−
(J−1/2)2

k
+ (J+r)2

k y
2(J+r)

k
1

1 + yq1/2+r
θ3(τ, z)

η3(τ)
(2.4)

These have one null vector and are inherited from a representation of SL(2,R) with

semi-infinite spectrum. When r is negative, the conformal dimension and R-charge of

the primary are given by formulae (2.2) with m̃ = J + r− k/2 and J̃ = (k+ 2)/2− J

(see [9]).

• Identity representation (J = 0; m ∈ Z):

chI(m; τ, z) = q−
1
4k

+ m2

k y
2m
k

1 − q

(1 + yq
1
2
+m)(1 + y−1q

1
2
−m)

θ3(τ, z)

η3(τ)
(2.5)

This representation has two null vectors. It descends from the trivial representation

of the SL(2,R) algebra.

We hope the notations are sufficiently intuitive and refer to [12] and [9] for further details.

The chiral and anti-chiral rings of the N = 2 superconformal field theory form inter-

esting subsectors of the theory. The chiral ring is generated by the operators that satisfy
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h = Q
2 . In the anti-chiral ring, the relation h = −Q

2 is satisfied. We find a chiral primary

state in the discrete character when r = 0, and an anti-chiral primary state in the discrete

character when r = −1 (see [9]). The identity character with m = 0 contains the identity

operator (h = Q = 0) which is both chiral and anti-chiral.

Interpreted as a σ-model, N = 2 Liouville theory has a curved non-compact target

space. States in continuous representations with J = 1
2 + iP propagate to infinity. The

momentum in the curved non-compact direction is denoted by P . States in discrete or

identity representations are bound states.

The characters of the N = 2 superconformal algebra satisfy the following identity [7]:

chc(J = 0,m = 0) = chI(m = 0) + chd

(

J =
k

2
, r = 0

)

+ chd(J = 1, r = −1). (2.6)

as well as the identity

chc

(

J =
1

2
,m =

1

2

)

= chd

(

J =
1

2
, r = 0

)

+ chd

(

J =
k + 1

2
, r = 0

)

. (2.7)

These identities can be viewed as generalizations of the identities between discrete, contin-

uous and the trivial representations of SL(2,R). One can write down such an identity for

any continuous character, if there exists a discrete or a finite dimensional representation

with the same quantum numbers. These additional addition relations are either spectral

flowed from (2.6) and (2.7) (see later), or involve non-unitary characters.

Note that the case k = 1 is special. In that case, we can combine the two relations (2.6)

and (2.7) to obtain an identity involving only the identity and continuous characters:

chk=1
c (J = 0,m = 0) = chk=1

I (m = 0) + chk=1
c

(

J =
1

2
,m =

1

2

)

. (2.8)

2.2 Spectral flow and extended characters

When we simultaneously change boundary conditions on all fermionic operators of the

N = 2 superconformal algebra (such that they pick up a phase as one goes around a

world-sheet circle), we spectral flow the N = 2 algebra. After one unit of spectral flow, we

recuperate the original boundary conditions. This operation acts on the quantum numbers

(J,m) of a given state as (J,m) → (J,m+ 1).

We define the extended N = 2 superconformal algebra as being generated by the usual

N = 2 generators together with the operator implementing k units of spectral flow. For

applications in superstring theory and to simplify the modular properties of the characters,

it is convenient to classify the states in representations of the extended algebra. We define

the following extended characters:

Chc(J,m; τ, z) =
∑

n∈Z

chc(J,m+ kn; τ, z) (2.9)

Chd(J, r; τ, z) =
∑

n∈Z

chd(J, r + kn; τ, z) (2.10)

ChI(m; τ, z) =
∑

n∈Z

chI(m+ kn; τ, z) (2.11)
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The quantum numbers m and r labeling the extended characters are defined modulo k.

The behavior of these extended characters under modular transformations is given in ap-

pendix A. We can perform spectral flow on both sides of the identities (2.6) and (2.7)

(by any amount) and obtain new identities. In particular, the character identities (2.6)

and (2.7) are valid for the extended characters as well:

Chc(J = 0,m = r) = ChI(m = r) + Chd

(

J =
k

2
, r

)

+Chd(J = 1, r − 1). (2.12)

Chc

(

J =
1

2
,m =

1

2
+ r

)

= Chd

(

J =
1

2
, r

)

+Chd

(

J =
k + 1

2
, r

)

. (2.13)

2.3 Boundary states

We consider A-type branes in N = 2 Liouville theory (see e.g. [7, 9, 11]). The boundary

state associated to a brane B is written as:

|B〉 =

∫ ∞

P=0

2k−1
∑

2m=0

ψBc (P,m)|P,m〉〉c +
k
∑

2J=2

2k−1
∑

2m=0

ψBd (J,m)|J,m〉〉d (2.14)

The definition of the continuous and discrete Ishibashi states |P,m〉〉c and |J,m〉〉d, as well

as the one-point couplings to the discrete operators ψBd (J,m), are given in appendix A.

In the bulk of the paper, we focus on the one-point functions of the continuous operators

ψBc (P,m).

The identity brane |0〉I whose self-overlap is the extended identity character ChI(m =

0) (in the boundary channel) has the following one-point function:

ΨI

0(P,m) = νiP
Γ(1

2 + iP +m)Γ(1
2 + iP −m)

Γ(1 + 2iP )Γ(2iP
k )

. (2.15)

The parameter ν is related to the coefficient µ of the bulk Liouville potential as ν = µ2/k

(see e.g. [8, 11]). The branes whose overlap with the identity brane |0〉I are one of the

extended characters (2.9), (2.10) or (2.11) are specified by the one-point functions:

• Continuous brane |P̂ , m̂〉c:

ψc
P̂ ,m̂

(P,m) = νiP
2

k
e−2πi 2m.2m̂

2k cos(4πPP̂ /k)
Γ(1 − 2iP )Γ(−2iP

k )

Γ(1
2 − iP +m)Γ(1

2 − iP −m)
. (2.16)

We can take the definition to apply to boundary states with P̂ purely imaginary as

well. As long as we stay within the bounds 0 ≤ iP̂ ≤ 1
2 the overlap with the identity

brane |0〉I is the continuous character with real Ĵ = 1
2 + iP̂ , 0 ≤ Ĵ ≤ 1/2, which

remains a unitary representation of the superconformal algebra.

• Discrete brane |Ĵ , r̂〉d:

ψd
Ĵ,r̂

(P,m) = νiP
1

2k
e−2πi 2(Ĵ+r̂).2m

2k
Γ(1 − 2iP )Γ(−2iPk )

Γ(1
2 − iP +m)Γ(1

2 − iP −m)

×
cosh

(

2πP (2Ĵ−1)
k

)

+ (−1)2m cosh
(

2πP (k−2Ĵ+1)
k

)

| cosh π(P + im)|2 . (2.17)
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• Identity brane |m̂〉I:

ΨI

m̂(P,m) = νiP e−2πi 2m.2m̂
2k

Γ(1
2 + iP +m)Γ(1

2 + iP −m)

Γ(1 + 2iP )Γ(2iP
k )

. (2.18)

The Cardy condition has been checked for the continuous and identity branes. For the

discrete branes, this condition is not satisfied in general [7, 9, 13]. We show in appendix A

that discrete characters generically appear with non-integer and/or negative multiplicity

in the overlap of two discrete branes. That indicates that the discrete boundary states are

inconsistent.

2.4 Brane addition relations

The modular bootstrap approach suggests that the characters identities (2.12) and (2.13)

can be extended to the full boundary states.1 That is the case for example in bosonic

Liouville theory (see [14, 16]). There is also a known example in supersymmetric Liouville

theory at level k = 1 (see [17]). We propose the relations (r̂ ∈ Z):

|Ĵ = 0, r̂〉c = |r̂〉I + |k/2, r̂〉d + |1,−1 + r̂〉d (2.19)

|P̂ = 0, 1/2 + r̂〉c = |1/2, r̂〉d + |k/2 + 1/2, r̂〉d. (2.20)

The labels of the brane correspond to the extended character that appears when computing

the annulus partition function for boundary operators between the brane and the identity

brane |0〉I. After some Γ-function and trigonometric gymnastics, it can be shown that the

one-point functions for these branes indeed satisfy the corresponding addition relations.

Moreover, the identities hold for the discrete part of the Cardy states as well.

Since the boundary states for individual discrete branes do not pass the Cardy check,

we cannot view these addition relations as identities between consistent boundary states.

Nevertheless, we will see in section 5 that these relations code semi-classical properties of

D-branes in string theory.

As a side-remark we note that in the special case k = 1, we get the brane addition

relations of [17]:

|Ĵ = 0, r̂〉k=1
c = |Ĵ = 1/2, 1/2 + r̂〉k=1

c + |r̂〉k=1
I

. (2.21)

In this case, the addition relation is one between boundary states that pass the Cardy

check individually.

2.5 Bound states on non-compact branes

We will now investigate more closely the first addition relation (2.19). If one computes the

self overlap of the right-hand side of the relation (2.19), one will obtain states in discrete

1Note that if one defines boundary state that corresponds to single (non-extended) representations of

the N = 2 superconformal algebra, one also finds analogous identities between the corresponding boundary

states.
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and in the identity representations.2 These states are bound states, localized on the world-

volume of the brane. Their conformal dimension can lie below the continuum of boundary

vertex operators. In this section we wish to understand the appearance of these bound

states in the self overlap of the continuous brane on the left-hand side of (2.19). To that

end, we will compute the overlap of two continuous branes c〈P̂1, m̂1|prop|P̂2, m̂2〉c, where

“prop” represents the bulk (cylinder) propagator. Then we will study what happens when

we continue P̂1 and P̂2 to i
2 (i.e. Ĵ1 and Ĵ2 to zero). This analysis is inspired by similar

analyses in bosonic Liouville theory [15, 16], and in supersymmetric Liouville theory at

level k = 1 [17].

We start from the definition of the continuous branes (2.14), (2.16). The continuous

branes do not couple to discrete bulk operators. The overlap of the two branes gives in the

bulk channel:

Z1,2 = c〈P̂1, m̂1|prop|P̂2, m̂2〉c=
∫ ∞

0
dP

∑

2m∈Z2k

4

k2
e2πi

2m(2m̂1−2m̂2)
2k cos

(

4πPP̂1

k

)

cos

(

4πPP̂2

k

)

cos π(−iP +m) cos π(iP +m)

sinh(2πP ) sinh(2πP
k )

Chclosedc (P,m) (2.22)

We obtain the partition function in the loop channel via a modular transformation:

Z1,2 =

∫ ∞

0
dP

1

k

∑

ǫ1,ǫ2=±1

cosh

(

2πP

(

1 + 2iǫ1
P̂1

k
+ 2iǫ2

P̂2

k

))

1

sinh(2πP ) sinh
(

2πP
k

)

∫ ∞

−∞
dP ′e

4πiPP ′

k Chopen
c (P ′, m̂1 − m̂2)

+

∫ ∞

0
dP

2

k

∑

ǫ2=±1

cosh

(

2πP

(

2i
P̂1

k
+ 2iǫ2

P̂2

k

))

1

sinh(2πP ) sinh(2πP
k )

∫ ∞

−∞
dP ′e

4πiPP ′

k Chopen
c

(

P ′, m̂1 − m̂2 +
k

2

)

(2.23)

Now we would like to write the boundary partition function Z1,2 in a more explicit form

as an integral over boundary operators with a given spectral density:

Z1,2 =

∫ ∞+i∆

P ′=−∞+i∆
ρ1(P

′; P̂1, P̂2)Ch
open
c (P ′, m̂1 − m̂2)

+

∫ ∞+i∆

P ′=−∞+i∆
ρ2(P

′; P̂1, P̂2)Ch
open
c

(

P ′, m̂1 − m̂2 +
k

2

)

. (2.24)

Notice the imaginary shift ∆ in the integration contour. This shift is needed for the

following reason: in order to make the necessary exchange of the bulk and boundary

momentum integrals, we need the integral over the bulk momentum P at fixed boundary

momentum P ′ to be convergent. Looking at the integrand in (2.23), we identify two

possible divergences at P = 0 and P → ∞. Firstly, the integral is always divergent

when the bulk momentum P goes to zero. Notice that the behavior of the integrand

2The detailed calculation is given in appendix A.
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close to P = 0 is universal: it does not depend on the brane parameters P̂1, P̂2. It

is an infrared divergence due to the non-compactness of the target space. We can cure

the divergence either by considering a relative spectral density (subtracting a reference

spectral density with fixed value of the brane parameters), or by removing the pole by hand.

Secondly, the bulk momentum integral may still diverge due to the ultraviolet integration

region. A prescription to cure this divergence [15] is to lift the integration contour for the

boundary momentum P ′ by giving it a sufficient imaginary part ∆. Then the integrand

will decay exponentially at large momentum P , and we will be able to exchange the order

of integration.

Let’s compute the necessary shift of the contour ∆. At large momen-

tum P , the integrand in the first two lines of equation (2.23) behaves as:

exp
(

2πP
k (2iǫ1P̂1 + 2iǫ2P̂2 − 1 + 2iP ′)

)

. The integrand in the last two lines of equa-

tion (2.23) is always less divergent. We deduce that we need to shift the integration

contour when 2Im(P̂1) + 2Im(P̂2) ≥ 1. We recall that we took the imaginary parts of P̂1,2

to be positive. The imaginary part we give to the boundary momentum P ′ is:

∆ = max

(

0 , Im(P̂1) + Im(P̂2) −
1

2
+ ǫ

)

(2.25)

with 0 < ǫ ≪ 1. Since we have the inequality 0 ≤ Im(P̂1), Im(P̂2) ≤ 1
2 , we need both

P̂1 and P̂2 imaginary to have a non-zero shift (or one of them equal to i/2, in which case

∆ = ǫ).

After giving a sufficiently large imaginary part to the boundary momentum (which

breaks parity symmetry in P ′), we find the following densities of boundary operators:

ρ1(P
′; P̂1, P̂2) =

∫ ∞

0
dP

1

k

∑

ǫ1,ǫ2=±1

cosh
(

2πP
(

1 + 2iǫ1
P̂1
k + 2iǫ2

P̂2
k

))

sinh(2πP ) sinh(2πP
k )

e
4πiPP ′

k

ρ2(P
′; P̂1, P̂2) =

∫ ∞

0
dP

2

k

∑

ǫ2=±1

cosh
(

2πP
(

2i P̂1
k + 2iǫ2

P̂2
k

))

sinh(2πP ) sinh(2πP
k )

e
4πiPP ′

k . (2.26)

The densities ρ1 and ρ2 are functions of the boundary momentum P ′ as well as the two

brane parameters P̂1 and P̂2. For given brane parameters, one can extend these functions

over the whole complex plane in P ′, and identify their poles. One can then bring the P ′

integral back to the real line (in order for the continuous part of the spectrum to correspond

to continuous characters), pick up the poles crossed in the process, and identify them as

isolated contributions to the partition function.

To analyze the pole structure of the densities of states ρ1 and ρ2, we can rewrite these

densities as the derivatives of phase shifts. We can perform the rewriting in terms of the

q-gamma function Γb(x). It is defined as (see e.g. [18]):

log Γb(x) =

∫ ∞

0

dt

t

e−xt − eQt/2

(1 − e−bt)(1 − e−t/b)
− (Q− 2x)2

8et
− Q− 2x

t
(2.27)

where Q = b + b−1. This function has poles at x = −mb − nb−1, where m and n are

positive integers. With b =
√
k and t = 2πp, we can write ρ1 and ρ2 in terms of q-gamma

– 8 –
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functions as:

ρ1(P
′; P̂1, P̂2) =

1

2πi

∑

ǫ1,ǫ2=±1

∂

∂P ′

[

log Γ√
k

(

−iP ′ + 1
2 + iǫ1P̂1 + iǫ2P̂2√

k

)

+ log Γ√
k

(

−iP ′ + 1
2 + k + iǫ1P̂1 + iǫ2P̂2√

k

)]

(2.28)

ρ2(P
′; P̂1, P̂2) =

2

2πi

∑

ǫ1,ǫ2=±1

∂

∂P ′

[

log Γ√
k

(

−iP ′ + 1
2 + k

2 + iǫ1P̂1 + iǫ2P̂2√
k

)]

. (2.29)

We note that we subtracted a universal part in the densities that does not depend on

the parameters of the branes P̂1 and P̂2. The subtraction regularizes the bulk infrared

divergence due to the infinite volume of the target space.

We can identify which poles are met when we bring back the P ′ integration contour

to the real axis (cf. figure 1). For the density ρ1, the poles are at:

− iP ′ = −1/2 − n− km+ iǫ1P̂1 + iǫ2P̂2

−iP ′ = −1/2 − k − n− km− iǫ1P̂1 − iǫ2P̂2 (2.30)

whereas for the density ρ2, we have poles at:

−iP ′ = −1/2 − k/2 − n− km− iǫ1P̂1 − iǫ2P̂2 (2.31)

where ǫ1, ǫ2 = ±1, and m and n are positive integers.3 Given that 0 ≤ Im(P̂1), Im(P̂2) ≤
1
2 , there is only one pole in the spectral density ρ1 that will be crossed as we shift the bound-

ary momentum contour to the real axis: the one from the first series in equation (2.30)

with m = n = 0 and ǫ1 = ǫ2 = −1. The residue for this pole is +1. The contour of the

integral with the spectral density ρ2 will not cross a pole when k is greater than one.

Eventually we can write down the annulus partition function in an explicit form:

• When ∆ = 0:

Z1,2 =

∫ ∞

P ′=−∞
dP ′ρ1(P

′; P̂1, P̂2)Ch
open
c (P ′, m̂1 − m̂2)

+

∫ ∞

P ′=−∞
dP ′ρ2(P

′; P̂1, P̂2)Ch
open
c

(

P ′, m̂1 − m̂2 +
k

2

)

(2.32)

• When ∆ 6= 0:

Z1,2 =

∫ ∞

P ′=−∞
dP ′ρ1(P

′; P̂1, P̂2)Ch
open
c (P ′, m̂1 − m̂2)

+

∫ ∞

P ′=−∞
dP ′ρ2(P

′; P̂1, P̂2)Ch
open
c

(

P ′, m̂1 − m̂2 +
k

2

)

+Chopen
c

(

P ′ = P̂1 + P̂2 −
i

2
, m̂1 − m̂2

)

(2.33)

3The location of the poles can be determined by analyzing the integrand at large bulk momentum P .
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Re(P’)

Im(P’) 1
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poles

Im(P’)

Re(P’)

Figure 1: As we shift back to the real axis the integration contour for the boundary momentum,

we pick up an additional contribution from a pole in the density of states ρ1. It gives an isolated

contribution to the partition function.

Self-overlap of a continuous brane. Let’s examine the self-overlap of a continuous

brane with parameters (P̂ , m̂). This is just a special case of the previous calculation when

we take the values P̂ = P̂1 = P̂2 and m̂ = m̂1 = m̂2. So we obtain:

• When the brane parameter P̂ is real, or between 0 ≤ Im(P̂ ) < 1
4 :

c〈P̂ , m̂|prop|P̂ , m̂〉c =

∫ ∞

−∞
dP ′
(

ρ1(P
′; P̂ )Chopen

c (P ′, 0)+ρ2(P
′; P̂ )Chopen

c

(

P ′,
k

2

))

(2.34)

• When the brane parameter is in the range 1
4 < Im(P̂ ) ≤ 1

2 :

c〈P̂ , m̂|prop|P̂ , m̂〉c =

∫ ∞

−∞
dP ′
(

ρ1(P
′; P̂ )Chopen

c (P ′, 0)+ρ2(P
′; P̂ )Chopen

c

(

P ′,
k

2

))

+Chopen
c (J ′ = 1 − 2Im(P̂ ),m = 0) (2.35)

An additional localized contribution appears starting at Im(P̂ ) = 1
4 (namely, at half the

momentum intercept caused by the linear dilaton). It contains relevant boundary oper-

ators, some of which have a conformal dimension below the continuum. At the value

Im(P̂ ) = 1
2 one of these operators becomes of conformal dimension zero. There the contin-

uous character Chopen
c (Ĵ = 0, m̂ = 0) splits into two discrete and one identity characters,

according to the identity (2.12). If we would go further and give P̂ an imaginary part

greater than 1/2, we would encounter characters of non-unitary representations.

We fulfilled our goal to compute the self-overlap of the continuous brane appearing on
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the left-hand side of the brane addition relation (2.19):

c〈Ĵ = 0, m̂|prop|Ĵ = 0, m̂〉c =

∫ ∞

−∞
dP ′

(

ρ1(P
′; P̂ , P̂ )Chopen

c (P ′, 0)

+ ρ2(P
′; P̂ , P̂ )Chopen

c

(

P ′,
k

2

))

+Chopen
I

(0) + Chopen
d

(

k

2
, 0

)

+ Chopen
d (1,−1) (2.36)

In appendix A it is shown that one obtains the same result for the self-overlap of the

sum of branes on the right-hand side of equation (2.19). It is interesting to note that the

way the correct multiplicity +1 for the discrete characters comes about in the algebraic

calculation is via a multiplicity +2 from the overlap of identity brane with the discrete

branes in the addition relation, and multiplicity −1 from the self-overlap of the sum of the

discrete boundary states. That fact will be important later on.

Remarks. Firstly, as we noted in passing, the case k = 1 needs to be studied separately.

For k = 1 and Ĵ = 0 the self-overlap picks up a pole in the density ρ1 as before. Moreover, a

pole in the spectral density ρ2 coincides with the contour of integration in that case. That is

due to a boundary infrared divergence. The integration can be regularized with a principal

value prescription. Equivalently, we pick up the pole with weight a half (multiplied by the

prefactor of 2 associated to the density of states ρ2). That leads to an extra contribution of

a single continuous character with J = 1/2 = m to the boundary spectrum. It implies that

both discrete characters appear with multiplicity two in the self-overlap of the brane (2.36).

The same conclusion is reached independently in appendix A. There it is shown that there

are no discrete subtractions in this case. The upshot is an agreement with the discussion

in [17] from both ways of calculating the self-overlap.

Secondly, we obtained the localized spectrum for generic level k in two ways: on the

one hand via the analytic continuation of the self-overlap, and on the other hand using the

full identity and discrete boundary states including their coupling to the discrete Ishibashi

states. We believe that provides a convincing crosscheck for these two procedures. This

is important because it indicates that we should take the couplings of the discrete branes

to discrete Ishibashi states seriously. It implies in particular that discrete branes do not

(generically) pass the Cardy check.

We note that there may be exchange of discrete states between boundary states despite

the fact that no pole appears in the density of exchanged bulk operators. Whether a discrete

state is exchanged is determined by its coupling to both branes, and when these are non-

zero, the contribution is weighted by the propagator. When one brane in the overlap is

localized, those contributions correspond to the formal prescription to pick up possible poles

and their residues in the bulk channel - why this is the case can be understood from the

modular bootstrap (see e.g. [9]). That the prescription to pick up poles in the bulk channel

only works when one of the two branes is localized seems related to the observation [19]

that an analogue of the Verlinde formula in non-rational conformal field theories works well

only in those cases.
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In the dual boundary channel, it is the contour dictated by the precise boundary condi-

tions that determine whether or not poles in the density of boundary operators contribute

to the annulus amplitude [15].

2.6 Semi-classical analysis of the branes

We finalize this section by a few remarks on the semi-classic target space interpretation of

the boundary conformal field theories. The semi-classical geometry has been described in

e.g. [20 – 22, 5] in some detail. We add a few extra remarks to those analyses that will be

useful in the following.

When we think of N = 2 Liouville theory as a two-dimensional σ-model, the associated

trumpet target-space geometry is given by:

{

ds2 = α′k
(

dr2 + coth2 r dψ2
)

e2Φ = e2Φ0

sinh2 r

(2.37)

The curvature radius of the geometry is
√
kα′. In the large k limit, we can perform a useful

semi-classical analysis. This analysis will break down close to r = 0, where the geometry

is singular (but the conformal field theory remains well-defined). The identity branes are

located in that region.

Semi-classical D1-branes in the trumpet. Studying solutions that extremize the

Dirac-Born-Infeld action for D1-branes in the background (2.37) (see e.g. [20]), one finds

the following two-parameter family of branes:

cosh(r) sin(ψ − ψ0) = c (2.38)

If c > 1, we put c ≡ cosh r0. In this case the brane world-volume is limited to the region

r ≥ r0. On the other hand, if c ≤ 1, the brane extends over the whole space-time. When

we go to radial infinity, the function sin(ψ − ψ0) goes to zero. So the branes described by

the curve (2.38) have two anti-podal legs in the asymptotic region, in the angular directions

ψ = ψ0 and ψ = ψ0 + π.

These D1-branes are the semi-classical incarnations of the continuous and discrete

branes as we will argue. We will also match the parameters c and ψ0 with the quantum

numbers that label the Liouville branes.

Continuous branes. Let’s begin with the continuous branes |P̂ , m̂〉c, with P̂ real and

strictly positive. It was argued in [22] that the T-dual D2 brane is doubly sheeted, and

partially covers the cigar. We strengthen the arguments of [22]. First we notice that the

parameter ψ0 defines the position of the brane in the angular direction, so changing it

should not change the self-overlap of the brane.4 Looking at equations (2.34) and (2.35),

we deduce that the angle ψ0 is a function of the quantum number m̂ only. Moreover the

4This reasoning only holds far away from the region where the Liouville potential is not negligible, since

the potential breaks rotation invariance in the ψ direction. We can apply it to open strings in continuous

representations that propagate in the asymptotic region.
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two quantities ψ0 and m̂ are respectively defined modulo 2π and 2k. We are lead to the

identification:

ψ0 = 2π
m̂

k
− π

2
(2.39)

The additional (harmless) shift is chosen such that the angle 2π m̂k gives the direction of the

tip of the brane (it is also the direction of an axis of symmetry for the brane). Now let’s

consider the overlap of the brane |P̂ , m̂〉c with the identity brane |m̂〉I. In the boundary

channel, it is the continuous extended character Chc(P̂ , 0). Thus all the open strings

stretching between the two branes are massive. We deduce that the brane does not extend

up to the horn at r = 0, and the parameter c of the semi-classical brane is greater than

one. To compute the relation between the parameters c and P̂ , we demand that the mass

of a string be equal to its length times its tension. Equation (2.2) implies that the mass

square of the lightest open string is P 2/kα′. On the other hand, a string stretching from

the identity brane at r = 0 up to the tip of the continuous brane at r = r0 has proper length

r0
√
kα′, and mass r0

√
k/2π

√
α′. Since c = cosh r0, we deduce that in the semi-classical

limit:

c = cosh

(

2π
P̂

k

)

(2.40)

In the case where the brane label P̂ is imaginary (and Ĵ is real), we expect the analytic

continuation of the matching relation (2.40) to be valid:

c = cos

(

2π
2Ĵ − 1

2k

)

. (2.41)

In this case the brane extends up to the horn of the trumpet, and is made of two discon-

nected strands (see figure 2).

Discrete branes. The discrete branes have couplings to the continuous representations

which are identical to those of the D2-branes covering the whole cigar [21]. This can be

seen by rewriting:

ψd
Ĵ,r̂

(P,m) =
1

2π
νiP e−2πi 2m.2m̂

2k Γ(−2iP )Γ

(

1 − 2i
P

k

)

(

Γ(1
2 + iP +m)

Γ(1
2 − iP +m)

eiπ( 1
2
+ 1−2Ĵ

k
)(2iP ) +

Γ(1
2 + iP −m)

Γ(1
2 − iP −m)

e−iπ( 1
2
+ 1−2Ĵ

k
)(2iP )

)

. (2.42)

We identify the one-point functions after a T-duality transformation on the parameters.

As for the continuous brane, the angular parameter ψ0 is given by the quantum number m̂:

ψ0 = 2π
m̂

k
− π

2
(2.43)

To precisely match the parameter c of the semi-classical brane with the quantum numbers

Ĵ ,r̂ defining the discrete brane, we translate the semi-classical matching of the spectral
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Identity
branes

N=2 Liouville Cigar

T−duality

Two−strand
continuous

branes
and

discrete
branes

Single−strand
continuous

branes

Figure 2: Semi-classical description of continuous, discrete and identity branes in N = 2 Liouville

theory, and their T-dual image in the cigar.

density with the derivative of the reflection amplitude of [21] into our T-dual picture. We

again obtain:

c = cos

(

2π
2Ĵ − 1

2k

)

. (2.44)

The number of branches. We note that the self-overlap of the discrete brane contains

continuous representations with angular momentum m = 0 and m = k/2 (cf. appendix A).

Since the discrete branes have Dirichlet boundary conditions in the angular direction, we

conclude (after appropriately normalizing) that open strings living on this brane have

integer or half-integer winding number. This proves that the discrete branes have two

anti-podal branches.

We may check this argument directly on the one-point function (2.42). We take the

infrared limit by concentrating on the behavior of the one-point function for bulk operators

with nearly zero momentum P . An analysis of the poles of the Γ-functions shows that the

dominant couplings are to even momentum modes, which says that asymptotically we have

two branches (that effectively halve the radius of the asymptotic circle, thus leading to only

even momentum couplings).

The same arguments apply to the continuous branes which therefore also have two

branches.
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x8,9

x7

6x

ρ
0

NS5

Figure 3: We consider k NS5-branes extended in the directions x0,1,...,5. They are evenly arranged

on a circle of radius ρ0, in the plane x8 = x9 = 0.

3. Neveu-Schwarz five-branes spread on a circle

We now want to use what we have learned about N = 2 Liouville theory with boundary

to study the behavior of D-branes close to NS5-branes. Our strategy will be to study the

branes first in the T-dual coset conformal field theories, then to translate back the results

into the NS5-brane background [5]. To that end, we briefly review the bulk string theory

background and its T-duals [24, 25].

3.1 The supergravity solution

Consider k NS5-branes in type II string theory in flat space and stretching in the directions

with coordinates xµ=0,1,...,5. They preserve sixteen supersymmetries. The coordinates of

the transverse space are xi=6,7,8,9. The back-reaction of the NS5-branes on flat space is

coded in the string frame metric, the NSNS three-form H(3) and the dilaton Φ:











ds2 = ηµνdx
µdxν +Hδijdx

idxj

e2Φ = g2
s H

H(3) = ∗4dH

(3.1)

where the harmonic function H is specified in terms of the positions xia of the NS5-branes

in transverse space:

H(xi) = 1 +

k
∑

a=1

α′

|xi − xia|2
, (3.2)

and ∗4 denotes the Hodge star operation in the four Euclidean transverse directions (with

flat metric).

We concentrate on k NS5-branes whose positions are k evenly spread points on a

topologically trivial circle of radius ρ0 in the (x6, x7) plane (see figure 3). We introduce

new coordinates (r, θ, ψ, φ):

(x6, x7) = ρ0 cosh r sin θ (cosψ, sinψ)

(x8, x9) = ρ0 sinh r cos θ (cos φ, sinφ) . (3.3)

where r ∈ R+, 0 ≤ θ ≤ π/2, and 0 ≤ φ,ψ ≤ 2π.

When we neglect world-sheet instanton corrections (or equivalently, spread the NS5-branes
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over the circle [26]), and take the double scaling limit [27]:

gs,
ρ0√
α′

→ 0

ρ0

gs
√
α′

fixed, (3.4)

the supergravity solution becomes:















ds2 = dxµdxµ + α′k
[

dr2 + dθ2 + tanh2 r dφ2+tan2 θ dψ2

1+tan2 θ tanh2 r

]

,

e2Φ =
g2eff

cosh2 r−sin2 θ
,

B = α′k
1+tan2 θ tanh2 r

dφ ∧ dψ ,
(3.5)

where the effective string coupling constant is

geff =

√
kα′gs
ρ0

. (3.6)

This background is an exact coset conformal field theory, corresponding to a null gauging of

SU(2)×SL(2,R) [28]. However it will be more convenient for us to use the exact conformal

field theory description of a T-dual background. The exact conformal field theory encodes

all world-sheet instanton corrections [29, 30, 5].

3.2 T-dual space-times and their conformal field theory description

We perform a T-duality along the angular direction φ and obtain the geometry:







ds2 = dxµdxµ + α′k
[

dr2 + coth2 r
(

dω
k + dψ

)2
+ dθ2 + tan2θ

(

dω
k

)2
]

,

e2Φ =
g2eff
k

1
sinh2 r cos2 θ

(3.7)

where ω is the coordinate T-dual to φ. The bracketed part of this solution is a Zk orbifold

of the direct product of two known sigma-models, namely the trumpet (2.37), and the bell

defined as:
{

ds2 = α′k
[

dθ2 + tan2 θ dω2
]

,

e2Φ = g2eff
cos2 θ

.
(3.8)

The latter geometry is the target-space of the supercoset SU(2)k

U(1) , also known as the N = 2

minimal model of central charge c = 3−6/k (see [31] for a review). The trumpet geometry

is more accurately described as N = 2 Liouville theory with a momentum condensate.

In order to study the behavior of D-branes in the NS5-brane background (3.1), we will

use the T-dual description (3.7). The conformal field theory describing the curved part

of the background is the Zk orbifold of the product
(

SU(2)k

U(1)

)

× (N = 2 Liouville) . The

orbifold is the part of the GSO projection that renders the closed string U(1)R charges

integer. To get a full description of the superstring background, we also have to take into

account the six flat directions parallel to the NS5-brane world-volume. They are described

by the N = 2 conformal field theory of six free real bosons Xµ=0,...,5 and six free real
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fermions ψµ=0,...,5. We will work in light-cone gauge. In summary, the relevant critical

conformal field theory describing the dynamics of strings in the background (3.7) is:





(

Xµ=2,...,5, ψµ=2,...,5
)

×
(

SU(2)k

U(1)

)

× (N = 2 Liouville)

Z
GSO
k



 /ZGSO
2 (3.9)

The product conformal field theory defines a particular non-compact Gepner model (see

e.g. [32 – 34] for discussions of these models).

We can also perform T-duality along the isometric ψ direction in the back-

ground (3.1) [5]. That would lead to the background described by the mirror dual of

the conformal field theory (3.9). In this mirror description, the N = 2 Liouville theory is

replaced by the cigar [33, 34].

4. D-branes in the coset conformal field theory

We will study D-branes in the full superstring theory by first constructing them in the prod-

uct conformal field theory (3.9). In section 5 we re-interpret them in the Neveu-Schwarz

five-brane background. We find more explicit realizations and important refinements of

the proposals of [5].

4.1 D-branes in the minimal model and in flat space

The boundary states in the full conformal field theory (3.9) are the product of factors

coming from Liouville theory, the minimal model and the free theory. We studied in detail

the boundary states in Liouville theory in section 2. Here we review briefly the relevant

boundary states in the minimal model and in flat space.

D-branes in flat space. D-branes in flat space are well-known. They induce Neumann

or Dirichlet boundary conditions for the open strings, according to the directions in which

they are extended. Let’s isolate two flat directions in space-time. They are described on

the world-sheet by a free complex boson and fermion. It is convenient to bosonize the free

fermion, to get a free compact boson at fermionic radius
√

2α′. The momentum for this

compact boson is given by a Z4 integer s. If this quantum number is even, we are in the

Neveu-Schwarz sector while if it is odd, we are in the Ramond sector. A D-brane extended

in those two directions is labeled by a quantum number ŝ, and its one-point function is:

ψNŝ (s) =
1√
2
e−iπ

ss̄
2 . (4.1)

For a brane localized in those two directions, the one-point function is:

ψDŝ,x̂µ(s, kµ) =
1√
2
e−iπ

ss̄
2 eikµx̂µ

. (4.2)

In the previous formula, kµ is the closed string momentum and x̂µ gives the position of the

brane.
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There is one subtlety when we work in the light-cone gauge: we have to put Dirichlet

boundary conditions in the light-cone directions [35]. By a double Wick rotation, we can

obtain branes extended in the time direction. The brane will be extended in at most four

out of the six flat directions of (3.7). In the following we will consider for definiteness

D-branes that fill four flat directions.

D-branes in the minimal model. D-branes in the N = 2 minimal model have also

been extensively studied (see e.g. [31]). A state in this theory is labeled by three quantum

numbers: an SU(2)k−2 spin j = 0, 1
2 , . . . ,

k−2
2 , an angular momentum n ∈ Z2k, and a

fermionic number s ∈ Z4. The D-branes with A-type boundary conditions are given by the

one-point functions:

ψMM
ĵ,n̂,ŝ

(j, n, s) =
1√
k

sin
(

π (2j+1)(2ĵ+1)
k

)

√

sinπ 2j+1
k

eiπ
nn̂
k e−iπ

sŝ
2 . (4.3)

The overlap of two branes is given in the open string channel by:

〈ĵ, n̂, ŝ|prop|ĵ′, n̂′, ŝ′〉 =
∑

j

N j

ĵĵ′
χopen(j, n̂ − n̂′, ŝ − ŝ′) (4.4)

where χ(j, n, s) are N = 2 minimal model characters, and N j

ĵĵ′
are the SU(2)k−2 fusion

coefficients. These branes have a clear semi-classical description in the bell geometry (3.8),

which is weakly curved at large k. They are described by the equation:

sin(θ) sin(ω − ω0) = sin(θ0). (4.5)

The geometric parameters θ0 and ω0 are related to the brane quantum numbers ĵ and n̂

as [31]:

θ0 =
π

2
− π(2ĵ + 1)

k
, ω0 = π

n̂

k
− π

2
(4.6)

The branes are oriented straight lines connecting two points of the boundary of the disc

geometry.

4.2 Boundary states in the GSO-projected theory

We are now ready to write down the boundary states in the full conformal field theory (3.9).

The last necessary step is to take care of the GSO projection. As was done in [34] for the

bulk theories, we adapt the standard technology that exists for compact Gepner models [36]

to the non-compact Gepner models. To project out the closed string states that do not

have odd R-charge, it is sufficient to project out the Ishibashi states that do not satisfy

this condition. This operation comes with a necessary change of normalization of the one-

point functions. Next, to implement spin-statistics in the partition function, we add to

the one point function a factor (−1)s
2
0/2, where s0 is the fermionic quantum number in one

of the flat factors. That makes for a minus sign for fermions in the one-loop amplitude.

Then we can identify the branes that preserve supersymmetry: they only have states with

– 18 –



J
H
E
P
0
7
(
2
0
0
8
)
1
2
5

odd R-charges in their overlap, in the open string channel. This procedure extends to the

construction of D-branes in all the non-compact Gepner models studied in [33, 34] .

With these remarks in mind, we can write down the one point functions for the D-

branes. We introduce the fermionic numbers s0,1,2,3 corresponding respectively to the four

factors of the conformal field theory (3.9): the Xµ=2,3 and Xµ=4,5 directions, the minimal

model and theN = 2 Liouville factor. We distinguish three families of branes corresponding

to the three families of section 2:

• Continuous brane |ŝ0; ŝ1; ĵ, n̂, ŝ2; Ĵ , m̂, ŝ3〉c:

Ψc
ŝ0;ŝ1;ĵ,n̂,ŝ2;Ĵ,m̂,ŝ3

= κce
iπ

s20
2 ψNŝ0 × ψNŝ1 × ψMM

ĵ,n̂,ŝ
× ψc

Ĵ,m̂,ŝ3
(4.7)

• Discrete brane |ŝ0; ŝ1; ĵ, n̂, ŝ2; Ĵ , r̂, ŝ3〉d:

Ψd
ŝ0;ŝ1;ĵ,n̂,ŝ2;Ĵ,r̂,ŝ3

= κde
iπ

s20
2 ψNŝ0 × ψNŝ1 × ψMM

ĵ,n̂,ŝ2
× ψd

Ĵ,r̂,ŝ3
(4.8)

• Identity brane |ŝ0; ŝ1; ĵ, n̂, ŝ2; m̂, ŝ3〉I:

ΨI

ŝ0;ŝ1;ĵ,n̂,ŝ2;m̂,ŝ3
= κIe

iπ
s20
2 ψNŝ0 × ψNŝ1 × ψMM

ĵ,n̂,ŝ2
× ψI

m̂,ŝ3 (4.9)

The arguments of the one-point functions are left implicit. The additional label ŝ3 in

the Liouville one-point functions ψc,d,I indicates that we consider the sector of the theory

spectrally flowed by ŝ3
2 units. The normalization factors κc,d,I are a consequence of the

GSO projection. They will be fixed by the Cardy condition in the following subsection.

Annulus amplitudes. We compute the annulus amplitudes for open strings stretching

between the various families of branes. We focus here on continuous and identity branes.

We write out the annulus partition function but suppress the integral over the modulus of

the annulus and the momenta (as well as the appropriate measure factor) in order not to

clutter the formulas. Let’s start out with the overlap of two identity branes [33, 9]:

ZI−I = I〈ŝ′0; ŝ′1; ĵ′, n̂′, ŝ′2; m̂′, ŝ′3|prop|ŝ0; ŝ1; ĵ, n̂, ŝ2; m̂, ŝ3〉I

= κ2
I

1

K

K−1
∑

v=0

1

23

1
∑

v1,v2,v3=0

[(

∑

s0,s1

(−1)s0+ŝ0−ŝ′0

δ
(4)
(s0,2+ŝ0−ŝ′0−v−2v1−2v2−2v3)

δ
(4)
(s1,ŝ1−ŝ′1−v−2v1)

Θs0,2

η3

Θs1,2

η3

)





∑

j,n,s2

N j

ĵĵ′
δ
(2k)
(n,n̂−n̂′−v)δ

(4)
(s2,ŝ2−ŝ′2−v−2v2)

χ(j, n, s2)





(

∑

r,s3

δ
(2k)
(r,m̂−m̂′− v

2
)δ

(4)
s3,ŝ3−ŝ′3−v−2v3

ChI(r, s3)

)]

(4.10)

We introduced the number K = lcm(4, 2k) (namely the lowest common multiple of 4 and

2k). The summation variables v, v1, v2 and v3 are Lagrange multipliers that implement
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the GSO projection in the closed string channel. The summation over v projects the closed

string R-charges to odd integer values. The other three take care of the coherence of the

spin structures between the different factors. The factor (−1)s0+ŝ0−ŝ′0 gives a minus sign to

the fermionic states, as required by spin-statistics. The second line gives the contribution

of the free fermions (at level 2) and bosons from the flat directions. If the two branes are

separated by a distance δ along some flat direction, there is an additional factor q
1
α′ ( δ

2π )
2

in the partition function. Using the Cardy condition, we can deduce the normalization of

the identity brane:

κI =
√

8K (4.11)

We can rewrite this partition function in a more explicit form. For the sake of symmetry, we

introduce another summation variable v0 equal to 1−v1−v2−v3 modulo 2, together with a

Lagrange multiplier a = 0, 1 that enforces this definition. Then we split the summation over

v ∈ ZK into two summations over p ∈ Zk and b = 0, 1. Finally we perform the summation

over the variables s0, s1, j, n, s2, r, s3 to get rid of the delta functions. We obtain:

ZI−I =
1
∑

v0,1,2,3=0

1
∑

a,b=0

(−1)b
(−1)a(1+

P

vi)

2

Θb+2v0+ŝ′0−ŝ0,2

η3

Θb+2v1+ŝ′1−ŝ1,2

η3

k−2
∑

2j=0

k−1
∑

p=0

N j

ĵĵ′
χ(j, 2p + b+ n̂− n̂′, b+ 2v2 + ŝ′2 − ŝ2)

ChI(p+
b

2
+ m̂− m̂′, b+ 2v3 + ŝ′3 − ŝ3). (4.12)

The sum over vi implements the sum over all possible NS and R-sector states, such that

they do not mix. Since we have the equivalent of four complex fermions, this is a sum

over Z
4
2. The sum

∑

vi we can interpret as the fermion number. So the sum over a with

the factor of 1/2 is a projector onto odd fermion number: (1 − (−1)F )/2. The label b

indicates whether we are in the NS or the R sector, and that the factor (−1)b implements

the space-time statistics.

It is straightforward to generalize the above calculation to the overlap of an identity

brane with a continuous brane. We find the same normalization factor for the continuous

brane: κc =
√

8K. In the open string channel the overlap reads:

ZI−c = I〈ŝ′0; ŝ′1; ĵ′, n̂′, ŝ′2; m̂′, ŝ′3|prop|ŝ0; ŝ1; ĵ, n̂, ŝ2; Ĵ , m̂, ŝ3〉c

=

K−1
∑

v=0

1
∑

v1,v2,v3=0

[(

∑

s0,s1

(−1)s0+ŝ0−ŝ′0

δ
(4)
(s0,2+ŝ0−ŝ′0−v−2v1−2v2−2v3)

δ
(4)
(s1,ŝ1−ŝ′1−v−2v1)

Θs0,2

η3

Θs1,2

η3

)





∑

j,n,s2

N j

ĵĵ′
δ
(2k)
(n,n̂−n̂′−v)δ

(4)
(s2,ŝ2−ŝ′2−v−2v2)

χ(j, n, s2)





(

∑

r,s3

δ
(2k)
(r,m̂−m̂′− v

2
)δ

(4)
s3,ŝ3−ŝ′3−v−2v3

Chc(Ĵ , r, s3)

)]

(4.13)
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Performing the same manipulation of variables as previously, we can rewrite this partition

function as:

ZI−c =
1
∑

v0,1,2,3=0

1
∑

a,b=0

(−1)b
(−1)a(1+

P

vi)

2

Θb+2v0+ŝ′0−ŝ0,2

η3

Θb+2v1+ŝ′1−ŝ1,2

η3

k−2
∑

2j=0

k−1
∑

p=0

[

N j

ĵĵ′
χ(j, 2p + b+ n̂− n̂′, b+ 2v2 + ŝ′2 − ŝ2)

× Chc(Ĵ , p+
b

2
+ m̂− m̂′, b+ 2v3 + ŝ′3 − ŝ3)

]

. (4.14)

The overlap of two continuous branes in Liouville was computed in section 2.5. We deduce

the overlap of two continuous branes in the product conformal field theory (3.9), depending

on the value of the shift ∆ defined in equation (2.25). We obtain after simplification:

If ∆ = 0:

Zc−c =

1
∑

v0,1,2,3=0

1
∑

a,b=0

(−1)b
(−1)a(1+

P

vi)

2

Θb+2v0+ŝ′0−ŝ0,2

η3

Θb+2v1+ŝ′1−ŝ1,2

η3

k−2
∑

2j=0

k−1
∑

p=0

[

N j

ĵĵ′
χ(j, 2p + b+ n̂− n̂′, b+ 2v2 + ŝ′2 − ŝ2)

∫ ∞

P ′=−∞
dP ′

(

ρ1(P
′; P̂ , P̂ ′)Chopen

c (P ′, p +
b

2
+ m̂− m̂′, b+ 2v3 + ŝ′3 − ŝ3)

+ ρ2(P
′; P̂ , P̂ ′)Chopen

c (P ′, p+
b

2
+ m̂− m̂′, b+ 2v3 + ŝ′3 − ŝ3)

)]

(4.15)

If ∆ 6= 0:

Zc−c =

1
∑

v0,1,2,3=0

1
∑

a,b=0

(−1)b
(−1)a(1+

P

vi)

2

Θb+2v0+ŝ′0−ŝ0,2

η3

Θb+2v1+ŝ′1−ŝ1,2

η3

k−2
∑

2j=0

k−1
∑

p=0

[

N j

ĵĵ′
χ(j, 2p + b+ n̂− n̂′, b+ 2v2 + ŝ′2 − ŝ2)

[∫ ∞

P ′=−∞
dP ′

(

ρ1(P
′; P̂ , P̂ ′)Chopen

c (P ′, p +
b

2
+ m̂− m̂′, b+ 2v3 + ŝ′3 − ŝ3)

+ ρ2(P
′; P̂ , P̂ ′)Chopen

c (P ′, p+
b

2
+ m̂− m̂′, b+ 2v3 + ŝ′3 − ŝ3)

)

+ Chopen
c (P ′ = P̂ + P̂ ′ − i

2
, p +

b

2
+ m̂− m̂′, b+ 2v3 + ŝ′3 − ŝ3)

]]

(4.16)

The density functions ρ1 and ρ2 are defined in equation (2.26). In the self-overlap of

continuous or identity branes the dependence on the label ŝi, n̂ and m̂ will drop out. A

consequence is that the spectrum on the brane will be independent of its (discretized)

orientation.
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Set of mutually supersymmetric branes. In order to know which set of branes pre-

serve some supersymmetry, we have to look at the partition function for the open strings

that stretch between the branes. The spectrum obtained must be consistent with the GSO

projection. That requires that the R-charges are odd integers.5 Looking at the annulus am-

plitudes, we see that all the branes we defined are BPS. Moreover, two branes are mutually

supersymmetric if and only if:

• The periodicity conditions are the same in each factor: ŝ0 − ŝi = ŝ′0 − ŝ′i (mod 2) for

i = 1, 2, 3.

• The branes satisfy the condition that angles and fluxes in various two-planes sum up

to zero (extending the analysis of [37]):

3
∑

i=0

ŝi − ŝ′i
2

+
(2m̂− n̂) − (2m̂′ − n̂′)

k
= 0 (mod 2). (4.17)

4.3 Semi-classical picture

We will now discuss the semi-classical interpretation of these branes in the geometry (3.7).

It is obtained from the semi-classical analysis of the branes in Liouville theory (section 2.6)

and in the minimal model (section 4.1). The only subtlety is the implementation of the

Zk orbifold in the angular direction ω (which is the geometrical manifestation of the GSO

projection). The invariance under the action of the Zk group of the (regular) branes we

consider is guaranteed by taking k copies of the semi-classical branes in the covering space.

In the conformal field theory we performed this step by discarding the Ishibashi states that

do not pass the GSO projection.

The identity branes |ŝ0; ŝ1; ĵ, n̂, ŝ2; m̂, ŝ3〉I are compact and located in the more strongly

coupled region.

The continuous branes |ŝ0; ŝ1; ĵ, n̂, ŝ2; Ĵ , m̂, ŝ3〉c and the discrete branes

|ŝ0; ŝ1; ĵ, n̂, ŝ2; Ĵ , r̂, ŝ3〉d are extended both in the trumpet and in the bell, according

to equations (2.38) and (4.5). Their semi-classical description is given by:

{

k−1
⋃

n=0

(

cosh(r) sin

(

ψ +
ω

k
− ψ0 +

2πn

k

)

= c ; sin(θ) sin

(

ω

k
− ω0 +

2πn

k

)

= sin θ0

)

}

(4.18)

The parameters θ0 and ω0 are given in equation (4.6) in terms of the boundary state labels

ĵ and n̂. The parameters c and ψ0 are given in terms of the continuous brane labels Ĵ and

m̂ in equations (2.40) and (2.39) (and for the discrete brane in equations (2.44) and (2.43)).

5. D-branes meet NS5-branes

In the previous section we built D-branes in the coset background (3.7). We now go back

to the T-dual background (3.5) describing the near-horizon limit of NS5-branes on a circle.

5Our conventions for the R-charges are those of [34] except that we put the U(1)R charge of the minimal

model to agree with the more standard expression QMM = s
2
−

n
k
.
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We first interpret the continuous brane as a stack of D4-branes blown up by the di-electric

effect. Using the results of section 2, we then give an exact description of the cutting of

D4-branes into pieces as they hit NS5-branes.

5.1 D-branes in the NS5-branes geometry

In order to develop some intuition about the configurations we are discussing, we first study

the semi-classical description of the branes in the coset geometry (3.5).

Continuous and discrete branes. The semi-classical description of the continuous

branes is obtained from equation (4.18). The T-duality is performed in the angular ω

direction. To get the equation defining the brane in the NS5-brane background (3.5), we

proceed as in [5]. First we write the angular coordinate ω in terms of the other coor-

dinates. This gives the gauge field living on the brane. Then we eliminate ω from the

equations (4.18) to get the geometry of the brane. In a parametric form, we obtain:

{

cosh(r) sin(ψ − ψ0 + ω0 + ω̃) = c

sin(θ) sin(ω̃) = sin(θ0)
(5.1)

The parameter ω̃ extends from zero to 2π. The direction of the brane in the plane (x6, x7)

is given by the angle ψ0 − ω0, which is fixed by the combination of the brane parameters

n̂− 2m̂. The same combination appears in the condition of mutual supersymmetry for two

branes (equation (4.17)). This means that mutually supersymmetric branes are parallel.6

The orthogonal combination n̂ + 2m̂ gives the value of a Wilson line on the brane. The

shape of the brane is shown in figures 4 and 5. We observe that there are two physically

different configurations for this brane, according to the value of the parameter c. For

c > 1, the brane does not intersect the circle of NS5-branes. It is composed of a single

self-intersecting sheet. For c < 1, the brane does intersect the circle of NS5-branes. It is

composed of two distinct sheets. If the parameters c and θ0 satisfy 1 > c > sin θ0, the two

sheets intersect each other, as shown in figure 5. On the other hand, if the parameters are

such that c < sin θ0, the two sheets do not intersect each other.

Notice that the continuous brane in the conformal field theory has positive parameters

Ĵ and ĵ, which implies that the geometric parameters c and θ0 satisfy: c ≥ cos 2π
2k ≥ sin θ0.

The conformal field theory description of continuous branes with parameter c smaller than

cos 2π
2k is an interesting open problem. We will make this analysis more precise in section 5.2.

For the discrete branes, the parameter c is always smaller than one and quantized (cf.

equation (2.44)). The semi-classical description is otherwise identical.

D-branes in the presence of fluxes and the di-electric effect. We will now argue

that the continuous brane can be thought of as a stack of D4-branes blown-up by the

di-electric effect. We first discuss this effect in the asymptotic region, where the doubly

scaled geometry (3.5) simplifies to R(r) × S3
(θ,φ,ψ). The radius of the three-sphere is equal

6If the fermionic parameters ŝi have different parity for the two branes, the condition becomes that they

must be orthogonal.
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x7

x6
x8,9

x7

Continuous
brane

Continuous
brane

x6

x7

x8,9
x8,9

x7

x6

x8,9

x6

NS5−branes
circle NS5−branes

circle

(a) (b)

(c) (d)

= 0

Figure 4: Semi-classical picture of the single-sheeted continuous brane. It is invariant under

rotation in the plane (x8, x9). The values of the parameters used to draw the brane are: c =

1.2, θ0 = π

8
, ψ0 − ω0 = 0. The circle of NS5-branes is also shown. (a),(b): The single-sheeted

continuous brane as seen from two different points of view (in Euclidean space). (c) A sketch

of the single-sheeted continuous brane, taking into account the non-trivial metric in space-time.

(d) The intersection of the single-sheeted continuous brane with the plane containing the circle of

NS5-branes.

to
√
kα′. This is the geometry of the throat created by k NS5-branes. In this region the

geometry of the continuous brane (5.1) simplifies to:

{

r ≫ 1

sin(θ) sin(ψ − ψ0) = ± sin(θ0)
(5.2)

The second line defines two anti-podal two-spheres embedded in the three-sphere (θ, φ, ψ).

The radius of these two-spheres is equal to
√
kα′ cos θ0. We deduce that the geometry of
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x6

x7

x8,9= 0

Continuous
brane

x8,9

x6

x7 x6
x7

x8,9

x8,9

x7 x6 NS5−branes
circle

NS5−branes
circle

Continuous
brane

(a) (b)

(d)(c)

Figure 5: Semi-classical picture of the double-sheeted continuous brane. It is invariant under

rotation in the plane (x8, x9). The values of the parameters used to draw the brane are: c = 0.8,

θ0 = π

8
, ψ0 − ω0 = 0. The circle of NS5-branes is also shown. (a), (b): The double-sheeted

continuous brane as seen from two different points of view (in Euclidean space). (c): A sketch

of the double-sheeted continuous brane, taking into account the non-trivial metric in space-time.

(d) The intersection of the double-sheeted continuous brane with the plane containing the circle of

NS5-branes. The two sheets are drawn with different colors.

the continuous brane far from the circle is (S2 +S2)×R, as drawn in figure 6 (a). So in the

full NS5-brane background (3.1), the tube goes into and out of the throat (cf. figure 6 (b)).

D-branes of low dimensional world-volume in the presence of fluxes tend to develop

additional world-volume dimensions (see [38] for the case of RR fluxes and [39] for the

case of NSNS fluxes). This is a di-electric effect. In particular in [39] it was shown that

n coincident D0-branes in the SU(2)k WZWN model tend to decay to a single spherical

D2-brane. The radius of this brane is
√
kα′ sin(πn/k) [31].
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S3

Continuous
brane

(a) (b)

S2

S2

NS5−branes

Figure 6: The shape of the continuous brane far from the NS5-branes. (a) In the doubly scaled

geometry (3.5), the intersection of the continuous brane with the transverse three-sphere is given

by two anti-podal two-spheres. (b) In the full NS5-brane background (3.1), the continuous brane

has two legs getting out of the throat.

The same phenomenon arises in the NS5-brane background (3.5), since the NS5-branes

source NSNS-flux on the three-sphere S3
(θ,φ,ψ). So even though the world-volume of the con-

tinuous brane (5.1) is seven-dimensional (three-dimensional in the transverse space x6,7,8,9,

and also extended in four flat directions), we can also think of this single extended D6-

brane as a stack of n coincident D4-branes. We identify the number n of D4-branes via

the radius of the two-spheres defined by equation (5.2):

n = 2ĵ + 1 (5.3)

The D-branes with one dimension in the transverse space x6,7,8,9 and extremizing the

DBI action in the NS5 background (3.1) are straight lines in the x6,7,8,9 coordinates. When

we minimize the tension as well as the length, the harmonic function drops out in the

calculation. Since the brane (5.1) is invariant under rotation in the (x8, x9) plane, we

consider only D-branes that preserve that symmetry. They are straight lines in the (x6, x7)

plane, located at the origin of the (x8, x9) plane. The direction of this line is given by

the angular parameter ψ0 − ω0, and the coordinate distance to the origin is given by the

parameter c multiplied by ρ0.

In fact, we are considering the bulk and brane system in a triple scaling limit, which

consists of the usual double scaling limit in the bulk, and a third limit that scales the

coordinate distance of the branes to the NS5-branes to zero, commensurate with the scaling

down of the coordinate distance between the NS5-branes, such that the ratio (equal to the

parameter c) is fixed.

We now understand that equations (5.1) describe the manifestation of the di-electric

effect for D4-branes in the presence of a circle of NS5-branes. A stack of coincident D4-

branes decays to a single D6-brane which shape is given by (5.1) (cf. figure 7). Far from
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the circle, the D6-brane has geometry (S2 + S2)× R in the transverse space x6,7,8,9. Close

to the NS5-branes, the two-spheres are deformed by the repulsion between the NS5-branes

and the D6-brane. We can understand the way the two-spheres are deformed as follow.

Consider the two-sphere on one leg of the brane. The north pole of the sphere is pulled

inwards as we get closer to the NS5-branes. It reaches the south pole and goes beyond

as the distance to the NS5-branes increases again. We end up on the second leg with the

second two-sphere. The two-sphere changes orientation in the process.

In more detail, consider for example the case where the D4-branes do not intersect

the circle of NS5-branes (c > 1). The Z2 symmetry ψ → −ψ + 2ψ0 − 2ω0 has a fixed

point at ψ = ψ0 − ω0: this is the point where the D4-branes are closest to the circle of

NS5-branes. This particular angular direction also defines the locus of the self-intersection

of the continuous brane (5.1). In terms of the coordinates x6,7,8,9 defined in (3.3), this

surface has equation:















− sinψ0x
6 + cosψ0x

7 = 0
(

cosψ0x
6+sinψ0x

7− ρ0
2

(

c
sin θ0

+ sin θ0
c

))2
+(x8)2+(x9)2 = ρ2

0

(

1
4

(

c
sin θ0

+ sin θ0
c

)2
−1

)

cosψ0x
6 + sinψ0x

7 ≥ c sin θ0
(5.4)

The first two lines describe a surface with topology of a two-sphere, while the third line

removes a piece of this surface. Actually, the surface is double-sheeted and without bound-

ary. Indeed, this surface describes the deformed two-sphere of the continuous brane at the

point where the north pole meets the south pole and the sphere changes orientation (cf.

figure 7).

When the stack of D4-branes intersects the circle, with parameters such that 1 ≥ c ≥
sin θ0, the D6-brane has two sheets that intersect each other along the surface defined by

the same equations (5.4). However this time the inequality is always satisfied, and we have

a full two-sphere. If the parameters satisfy c < sin θ0, the two sheets of the brane do not

intersect each other anymore.

Identity branes. To obtain a semi-classical description of the identity branes, it is con-

venient to consider them in the background mirror to (3.7), where the trumpet is replaced

by the cigar and the region near the tip is under geometric control. Building the identity

branes in the conformal field theory mirror to (3.9), we can deduce the semi-classical de-

scription of the identity branes in the Neveu-Schwarz five-brane background (3.5) [5]. We

can also use the following semi-classical description of the identity brane in the trumpet

geometry (2.37):

r = 0 ; ψ − ψI = 0 (5.5)

with the angular direction ψI defined in terms of the brane parameter m̂ as:

ψI = 2π
m̂

k
. (5.6)
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8,9x = 0
8,9x = 0

x

x6

7 x

x6

7

θ0
= π(k−2n)/2k

Continuous
brane

~
0

ψ − ω0

(a)

(b)

D4

NS5

n D4

Figure 7: The di-electric effect for a stack of D4-branes in the presence of a circle of NS5-branes.

(a) The coincident D4-branes are blown up to a single continuous brane. Far from the circle, the

continuous brane has geometry (S2 + S2) × R in the transverse space x6,7,8,9. Close to the circle,

the two-spheres are deformed by the repulsion between the D6-brane and the NS5-branes. (b) The

intersection of the previous D-branes with the plane containing the NS5-branes. We indicate how

the parameters defining the continuous brane and the straight D4-branes are related.

Then we perform a T-duality as in the previous case to get the semi-classical description

of the identity branes in the NS5-brane background:
{

r = 0

sin(θ) sin (ψ − ψI + ω0) = sin(θ0)
(5.7)

The parameters θ0 and ω0 are defined in terms of the brane parameter ĵ and n̂ in (4.6). The

parameter ĵ fixes the length of the brane. These branes are straight lines in the (x6, x7)

plane, starting and ending on the circle of NS5-branes. As for the continuous branes, the

combination of the brane parameters n̂− 2m̂ gives the angular orientation of the brane.

In the minimal model, the choice of parameters ĵ, n̂, ŝ2 is constrained by the selection

rule (namely: 2ĵ+ n̂+ ŝ2 is zero modulo two).7 As a consequence, the length of an identity

brane is related to its orientation. Note that even though the NS5-branes have been spread

on the circle, their position is still coded in the worldsheet instantons. We make the minimal

assumption that the identity branes are suspended between NS5-branes. Since the identity

7For simplicity we only discuss the branes of the minimal model with ŝ2 even. The branes with ŝ2 odd

have a semi-classical interpretation that differs from the one given in equation (4.5) (see [31]).
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Figure 8: Semi-classical description of an identity brane, stretching between NS5-branes.

branes are defined only for integer values of the parameter m̂, this assumption is consistent

with the selection rule in the minimal model. The semi-classical description of the identity

branes gives a way to recover the positions of the NS5-branes on the circle.

5.2 D-branes cut in two pieces

Consider a continuous brane (4.7). In order to obtain a semi-classical picture of the oper-

ation we performed in the exact boundary conformal field theory, we study what happens

when the brane parameter Ĵ goes to one half (i.e. the imaginary part of Ĵ goes to zero),

keeping all the other brane parameters fixed. The geometric parameter c goes down to

one as the brane parameter Ĵ goes to one-half. When the geometric parameter c is equal

to one, the continuous brane touches the circle and is on the verge of being cut into two

intersecting sheets.

Let’s make this point more precise. First notice that the surface (5.1) is symmetric

under the reflection ψ − ψ0 + ω0 → −(ψ − ψ0 + ω0) (together with ω̃ → π − ω̃). Figures 4

and 5 suggest that when the brane is cut, the two sheets are exchanged by this symmetry.

We would like to know whether there exists a smooth path γ on the brane connecting two

symmetric points, of respective angular coordinate ψ1 and −ψ1 + 2ψ0 − 2ω0. The value of

the parameter ω̃ for these points is noted respectively ω̃1 and π − ω̃1. Along the path γ,

the angular coordinate ψ goes smoothly from ψ1 to −ψ1 + 2ψ0 − 2ω0, and the parameter

ω̃ goes smoothly from ω̃1 to π − ω̃1. Notice that the parameter ω̃ has to stay within the

range θ0 ≤ ω̃ ≤ π − θ0 for the equations (5.1) to have a solution. For the same reason the

sum ψ−ψ0 +ω0 + ω̃ must be positive and smaller than π. We deduce that along the path

γ, the sum ψ−ψ0 +ω0 + ω̃ goes smoothly from ψ1−ψ0 +ω0 + ω̃1 to π− (ψ1−ψ0 +ω0 + ω̃1),

necessarily crossing the value ψ − ψ0 + ω0 + ω̃ = π
2 . But this is possible if and only if the

brane parameter c is greater or equal to one. Indeed, if c < 1, the first equation in (5.1)
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Figure 9: A stack of D4-branes approaches a circle of NS5-branes, as the brane parameter Ĵ goes

to one-half. For Ĵ = 1

2
the D4-branes are cut in two pieces.

does not have solutions for ψ−ψ0+ω0+ω̃ = π
2 . The conclusion is that the path γ exists for

c ≥ 1. In that case, the two points are smoothly connected and the brane is single-sheeted.

If c < 1, there is no smooth path between two symmetric points, and the brane is made of

two distinct sheets. If 1 > c > sin θ0, the two sheets of the brane intersect and one can find

a path between two symmetric points. However the parameter ω̃ will not vary continuously

along such a path, indicating that we pass from one sheet onto the other.

We argued in the previous section that the continuous D6-brane can be interpreted as

a stack of D4-branes. The cutting of the D6-brane in two sheets can also be understood

in terms of the D4-branes. As the D4-branes hit the NS5-circle, they are cut in two semi-

infinite pieces (see figure 9).

The brane addition relation (2.20) is valid precisely at the point where the D6-brane

is cut in two pieces. That implies that the continuous brane with parameter Ĵ = 1
2 (and

m̂ half-integer) is the sum of two discrete branes. The picture obtained in the conformal

field theory fits nicely with the semi-classical analysis.

5.3 D-branes cut in three pieces

Now we want to study the continuous brane when it gets inside the circle of NS5-branes,

that is for values of the parameter c smaller than one. Consider a continuous brane (4.7)

with parameter m̂ integer (and any value for the other parameters). We study what

happens when the parameter Ĵ goes to zero, keeping all the other parameters fixed. That

mirrors what we did in section 2.5, while computing the overlap of continuous branes in

Liouville theory. The addition relation (2.19) implies that an identity brane (4.9) appears

when the continuous brane parameter Ĵ is equal to zero. The identity brane created has

the same parameters as the continuous brane. We will now understand the appearance of

this identity brane from the semi-classical analysis of the continuous branes.
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Figure 10: A particular case: a single D4-brane approaches a circle of NS5-branes, as the brane

parameter Ĵ goes to zero (the parameter m̂ is integer). For Ĵ = 0 the D4-brane is cut in three

pieces. Massless open strings live on the compact piece.

Let’s first consider the simpler case in which the continuous brane parameter ĵ is zero.

In this situation, the continuous D6-brane represents one single D4-brane. Now we observe

that at the special value of the brane parameter Ĵ = 0, the geometric parameter c is equal

to cos(2π
2k ): we are considering the situation where the D4-brane hits a pair of neighboring

NS5-branes (cf. figure 10). The compact part of the D4-brane that stretches between the

NS5-branes matches precisely the semi-classical description (5.7) of the identity brane on

the right-hand side of equation (2.19). We conclude that in this case the brane addition

relation (2.19) captures the fact that the D-brane hitting two separated NS5-branes consists

of three pieces.

Next, let’s consider the generic case where the brane parameter ĵ is non-zero. The

identity brane that appears does not stretch between neighboring NS5-branes. To under-

stand the appearance of such a compact brane, we have to take into account the blowing

up of the stack of D4-branes by the di-electric effect. In figure 11 we draw the intersec-

tion of the continuous brane (5.1) with the plane containing the circle of NS5-branes. We

observe that at the special value of the brane parameter Ĵ = 0, the intersection of the

continuous brane with the interior of the circle of NS5-branes matches (up to corrections

of order 1
k ) the semi-classical description (5.7) of the identity brane that is generated. We

are still describing D-branes that are cut into three pieces when hitting two separated NS5-

branes. But the way the D-branes are cut is less intuitive, because they are blown up by

the di-electric effect.

The computation of section 2.5 tells us that when the parameter Ĵ is equal to 1
4 , new

massive states appear on the continuous brane. They are bound states on the world-volume

on the brane. The mass of these states goes down as the parameter Ĵ goes to zero. At

the special value of the parameter Ĵ = 0, some of these localized states become massless.

The new massless modes live on the identity brane of the addition relation (2.19). So

the appearance of poles in the densities of states studied in section 2.5 corresponds to the
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Figure 11: The generic case: a continuous brane approaches a circle of NS5-branes, as the brane

parameter Ĵ goes to zero (the parameter m̂ is integer). For Ĵ = 0 an identity brane appears,

sketched by a dotted line. Massless open strings live on this compact brane.

gradual creation of a new brane in space-time.

Another way to see this is to look at the D0-charge on the continuous D2-brane in

the cigar. The D0-charge is defined as: 2
2π

∫

F = 2k
2π arcsin c. The additional factor of two

comes from the fact that the brane is double-sheeted. As the parameter c goes from 1 to

cos 2π
2k , the D0-charge changes by one unit. In our context, this corresponds to the creation

of one unit of D4-brane charge.

The fact that the addition relation (2.19) is only valid for integer values of the brane

parameter m̂ is consistent with the position of the NS5-branes on the circle, and thus with

the selection rule in the minimal model.

We repeat that the movement of the continuous brane as the parameter Ĵ changes is

infinitesimal when measured in the asymptotic flat space metric (due to the triple scaling).

Indeed the geometry of the continuous brane far from the circle (given by equations (5.2))

does not depend on the parameter Ĵ .

It would be interesting to study what happens when the continuous brane gets even

closer to the center of the NS5-branes circle. However making the analytic continuation

of the continuous brane parameter Ĵ to negative values is not the right way to proceed,

since it induces the appearance of non-unitary characters of the N = 2 superconformal

algebra. An alternative could be to introduce a non-factorized brane as the continuation

of the continuous brane beyond Ĵ = 0.

6. Four-dimensional gauge theory in the depths of the throat

The discussion of the previous section is valid independent of the boundary conditions we

choose for the flat space directions (provided we have at least two directions with Dirichlet

boundary conditions). In this section we focus on D4-branes, extended in the x0,1,2,3,6

directions and localized in the other directions, as well as mutually supersymmetric D6-
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branes. We perform an analysis of the low-energy excitations on these branes, and a

preliminary analysis of their interactions.

6.1 Energy scales

First we specify the energy scales on which we will focus. There are two fixed energy

scales in the problem, namely the string scale Ms = 1/
√
α′ and the curvature scale Mgap =

1/
√
kα′. At the string scale oscillation modes become important. The curvature scale gives

the order of the mass gap due to the linear dilaton, as well as the Kaluza-Klein mass gap

due to compactification of some of the transverse directions. The low energy scales we

focus on are energies far below both the string scale and the curvature scale.

6.2 Localized gauge theory on the non-compact brane

Let’s consider the theory living on a continuous brane of parameter Ĵ . In the throat, due to

the presence of the linear dilaton, the theory on a generic continuous brane is gapped, and

at energies below Mgap we have a theory with no excitations at all. Operationally, if Ĵ has

an imaginary part, or we have real Ĵ in the range 1/4 < Ĵ ≤ 1/2 , the self-overlap of the

continuous brane is given in equation (4.15) and all states are in massive representations.

The theory at low energy is trivial in this case.

When we bring down the brane parameter into the range 0 < Ĵ < 1/4, the self-overlap

of the continuous brane is given in equation (4.16). All the states are still in massive

representations, but we notice that a state localizes and its mass drops below the mass

gap Mgap. By tuning Ĵ to be close to Ĵ = 0, we can make the mass parametrically small

compared to Mgap. At energies below that mass, we still have a trivial theory. We may

get an interesting theory at energies squared between 2Ĵ(1 − 2Ĵ)M2
gap and M2

gap/4.

At these energy scales, the theory is localized in the transverse space and is effectively

four-dimensional. It has eight supercharges. Via the annulus amplitude we identify the ex-

citations of the theory and they fill out a single massive gauge multiplet of four-dimensional

N = 2 supersymmetry. We find a real massive vector, four Majorana spinors and five

scalars. If we denote the normalizable bound state in the full theory (at j = 0 = n) by:

|kµ=0,1,2,3, 0, [Ĵ ]〉 (6.1)

then the excitations filling out the massive gauge multiplet are:

ψ2,3
−1/2|kµ, 0, [Ĵ ]〉
ψ4,5
−1/2|kµ, 0, [Ĵ ]〉
G±,nc

−1/2|kµ, 0, [Ĵ ]〉
Sp∓1G

±,nc
−1/2|ki, 0, [Ĵ ]〉. (6.2)

We have used the superscript nc to denote an operator acting on the non-compact N = 2

Liouville theory only and the notation Sp∓1 indicates a spectral flow by ∓1 units in both the

minimal model and the non-compact model (at total central charge c = 6). For instance,

starting from the state G+,nc
−1/2|kµ, 0, [Ĵ ]〉 we can generate another state of the same conformal
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dimension by spectrally flowing by minus one unit. The state we obtain is anti-chiral in the

minimal model, with R-charge −1 + 2/k. It has R-charge −2/k in the non-compact model

for a total R-charge of −1. We refer to appendix B for an explicit analysis of how these

states are coded in the annulus partition function in the particular case of k = 3 NS5-branes.

The transverse polarizations of the massive vector are given by the first two states,

while the other states give the longitudinal polarization as well as five scalar fields. We can

figure out which scalar plays the role of the longitudinal polarization of the vector by the

following reasoning. In an old covariant approach to the determination of the spectrum,

we have a null state in the Hilbert space which corresponds to GN=1
−1/2|kµ, 0, [Ĵ ]〉. It is a null

state since GN=1 is the supercurrent corresponding to the gauging of N = 1 supergravity

on the world-sheet. Explicitly, we have that this null state is:

kµψ
µ
−1/2 +GN=1,nc

−1/2 |kµ, 0, [Ĵ ]〉, (6.3)

where we used the fact that the supercurrent annihilates the vacuum in the Dirichlet and

the minimal model factors. Thus in the light-cone gauge where we broke Lorentz invariance

and chose to fix the gauge symmetry by gauging away the light-cone excitations, we identify

the scalar

GN=1,nc
−1/2 |kµ, 0, [Ĵ ]〉 (6.4)

as the longitudinal component of the massive vector field. The other five scalars complete

the massive N = 2 vector multiplet.

When we proceed to consider a brane with parameter Ĵ = 0, we find that the massive

vector multiplet splits into a massless vector multiplet and a massless hyper multiplet.

By the previous reasoning, and the fact that |kµ, 0, [0]〉 is annihilated by both G±,nc
−1/2,

we find that the longitudinal polarization of the vector is now null (as it must be for a

massless vector). There is then only one possible set of multiplets of the supersymmetry

algebra corresponding to the vector and the six scalars, namely a massless vector and hyper

multiplet. Explicitly, the massless vector multiplet has bosonic degrees of freedom:

ψ2,3
−1/2|kµ, 0, [0]〉
ψ4,5
−1/2|kµ, 0, [0]〉 (6.5)

and the massless hyper multiplet has four bosonic scalar degrees of freedom:

|kµ, 0,±1/2〉
Sp∓1|kµ, 0,±1/2〉. (6.6)

We indicated the discrete representation chiral and anti-chiral ground states by |0,±1/2〉.
Alternatively, at Ĵ = 0 we can interpret the excitations as coming from various overlaps

of terms in the brane addition relation (2.19). The four bosonic degrees of freedom in the

N = 2 vector multiplet arise from the self overlap of the identity brane on the right-hand

side of the addition relation (2.19). The other massless states come from the overlap of

the identity brane with the discrete branes. This overlap contains the discrete characters
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of (2.12). In the character Chd(J = k
2 , r = 0) we find one chiral primary state with U(1)

R-charge Q = 1, and the spectral-flowed anti-chiral primary with Q = −k
2 . These states

combine with chiral and anti-chiral primary from the minimal model and the flat direction

to give massless modes (with Q = ±1). In the second discrete character Chd(J = 1, r = −1)

we find one anti-chiral primary state with Q = −1, and the spectral-flowed chiral primary

with Q = k
2 . Notice that from the right-hand side of (2.19), we expect eight massless

bosonic states from the overlap of the identity brane with the two discrete branes. However

half of them are canceled by the self overlap of the discrete branes, as shown in appendix A.

Interactions. In the spectrum of excitations, we witnessed a reverse Higgs mechanism

consistent with N = 2 supersymmetry in four dimensions. When we survey what the

relevant Higgs mechanism can be, consistent with N = 2 supersymmetry in four dimensions

(see [41]), we find only one candidate. A real massive vector multiplet arises when we add

a Fayet-Iliopoulos D-term to a U(1) theory with a charged hyper multiplet. The vector

multiplet and the hyper multiplet acquire equal masses (proportional to the charge times

the FI-parameter). Indeed, we did find that as we change Ĵ , the vector and hyper multiplet

acquire the same mass.

To nail down this picture we need to analyze the interactions between open string

states to verify the presence of the necessary cubic and quartic interaction terms. That

may be doable on the basis of the results of [42] that map boundary n-point functions in

H+
3 into an in principle solved problem in boundary bosonic Liouville theory. One can

apply this reduction to boundary N = 2 Liouville theory and thus determine the open

string interaction terms. We will not attempt to perform this calculation here. It would

be interesting to do it, and in particular to prove explicitly that at non-zero Ĵ the hyper

multiplet is indeed charged.

Without the necessary study of the interaction terms we can make one more observation

that is consistent with the Higgs mechanism advocated above, which is the breaking of

the (accidental) R-symmetry (at low energy). When the brane parameter Ĵ is zero, the

Hilbert space of open strings splits into identity and discrete sectors. The scalars in the

hyper multiplet are at the lowest level available in their sector, and there are no null states

at the lowest level. Moreover, the action of the supersymmetry generators pairs up the

scalars into doublets of the U(2)R symmetry of the theory. Each scalar pairs up with its

spectral flowed counterpart. On the other hand, when the brane parameter is non-zero, the

low-energy symmetry that exchanged the two scalars does not commute anymore with the

BRST operator (as can clearly be seen by the existence of the null state that we mentioned

above). The U(2)R symmetry gets broken to a U(1)R that does not act on the component

of the complex doublet in the hyper that acquires a vacuum expectation value.

Finally, we note that at Ĵ = 0 = m̂ we have that a marginal deformation of type F on

the world-sheet (i.e. the holomorphic square root of the bulk Liouville potential) becomes

precisely one of the normalizable massless scalars in the hyper multiplet. The fact that we

add such a term to the world-sheet action in order to turn up the value of Ĵ is consistent

with the fact that the corresponding field acquires a vacuum expectation value. More
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precisely, we have the relations [11]:

µA =

√

2kµ

π
sinπ(−Ĵ − m̂)

µ̄A =

√

2kµ

π
sinπ(−Ĵ + m̂) (6.7)

for the coefficients µA and µ̄A of the F-terms on the boundary of the world-sheet which are

holomorphic square roots of the bulk Liouville potential. In a covariant formulation, and for

a zero momentum kµ = 0 ground state, we note that the combination GN=1,nc|0, 0, [Ĵ ]〉 is

pure gauge. We conclude that for very small non-zero Ĵ and m̂, the null deformation, which

will not change the spectrum on the non-compact brane will correspond to the deformation

µA = −µ̄A (since the brane parameter m̂ does not change the spectrum). Therefore the Ĵ

deformation near Ĵ = 0 corresponds to the deformation µA = +µ̄A. Thus, infinitesimally

near Ĵ = 0 = m̂, we have a complex scalar field which has one component which becomes

the longitudinal component of the massive vector boson, and an orthogonal component

which acquires a vacuum expectation value.

Remark. An interesting open problem is to attempt to give a mass to the hyper multiplet

while keeping the vector multiplet massless. A naive attempt to separate the identity brane

from the rest of the Ĵ = 0 brane would fail because the remainder does not pass the Cardy

check. Another way to put this is to note that one would generate two massive hyper

multiplets, and minus one massless hyper multiplet.

6.3 The gauge theory on the compact branes

We turn to the gauge theory on the compact identity branes. We will be brief since the

theory has been analyzed before. The identity branes are stretched between two NS5-

branes. The effective gauge theory below the curvature scale Mgap is four dimensional.

The low-energy theory contains one massless vector multiplet of N = 2 supersymmetry

in four dimensions, and gives rise to a pure U(N) super-Yang-Mills theory for N compact

branes. They have been discussed as exact boundary states in [7, 5, 23].

6.4 Combining branes

If we consider simultaneously non-compact and compact branes, we must consider whether

they are mutually supersymmetric. Once we fix the parameters m̂ and n̂ of the identity

brane (which fix its orientation) then we must fix the non-compact brane orientation such

that the brane is parallel. We then preserve eight supercharges again. At energy scales

below the mass gap but above the energy ĴMgap, we have a massive vector multiplet of mass

squared −2Ĵ(2Ĵ − 1)/kα′, a complex massive vector with a mass squared −Ĵ(Ĵ − 1)/kα′

as well as the massless vector multiplet on the identity brane. The real massive vector

multiplet and the massless vector multiplet on the identity brane have been discussed

before.

The complex massive vector multiplet embodies a Higss mechanism of the second

type [41] in which one vector multiplet eats a scalar of another vector multiplet and vice

– 36 –



J
H
E
P
0
7
(
2
0
0
8
)
1
2
5

versa. In more modern language, we go to a Coulomb branch of an N = 2 gauge theory.

Again, to render the N = 2 gauge theory interactions manifest, we would need to analyze

in detail the open string interactions.

7. Two NS5-branes

The case of two NS5-branes is an interesting special case. When we spread two branes on

a circle, they are in fact spread on a line (which we will take to be the x6 direction). We

therefore preserve a larger symmetry group in this case, which includes an SO(3)789 isom-

etry group (enlarged to O(3) due to the Z2 operation interchanging the two NS5-branes).

We will use this extension of the symmetry group to make an interesting consistency check

on our claims in previous sections. In the exact conformal field theory at k = 2, the mini-

mal model becomes trivial. The bulk theory and its symmetries were thoroughly analyzed

in [43]. We recall that at level 2 we can fermionize the asymptotic angular variable θ in

Liouville theory by the equivalence e±iθ = 1√
2
(ψ1 ± iψ2). This allows us to define the

SU(2)2 affine currents:

Ji =

(

ψρψi −
1

2
ǫijkψjψk

)

e−ρ, (7.1)

where ψ3 is the fermionic partner of the angular variable θ and ψρ is the superpartner of

the asymptotic radial direction ρ. From the detailed arguments in [43], one concludes that

the bulk Liouville deformation can be chosen such as to preserve a diagonal SU(2)2 current

algebra. It is this local symmetry algebra on the world-sheet that generates the SO(3)789
isometry group in space-time (in the doubly scaled regime).

We wish to add non-compact branes to this configuration. In doing so we observe

that there is a single non-compact D4-brane that we can add to the asymptotically flat

configuration which will preserve the SO(3)789 isometry group. It is the non-compact D4-

brane that stretches along the line separating the NS5-branes (namely the x6 direction)

and coinciding with the NS5-branes in the transverse space x7,8,9. From the arguments

in the previous section, we expect that that brane should correspond to the non-compact

brane at Ĵ = 0 = m̂ after descending down the throat.

We can test this directly in the full exact conformal field theory, using the symmetry

algebra above. From the results of [43]8 and [11]9 it is clear that the three currents evalu-

ated on the boundary correspond precisely to the two marginal F-term deformations and

the marginal D-term deformation of boundary N = 2 Liouville theory. Thus, the bound-

ary deformations form a triplet of SO(3)789. Consequently, when any of these boundary

deformations is turned on, we break SO(3)789. We already saw that the F-term boundary

deformations are generically zero at Ĵ = 0 = m̂ (see equation (6.7)). So, to check whether

SO(3)789 is preserved we need to check whether also the third deformation parameter is

zero. It has the value [11]:

µ̃A = −ν 1
2
Γ(−1/k)

2πk
cos

π

k
(2Ĵ − 1). (7.2)

8See the bottom of page 14 of [43].
9See the bottom of page 34 of [11].
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We observe that precisely at the value k = 2, and Ĵ = 0 the third boundary deformation

parameter µ̃A is zero as well. In summary, we used a particularly symmetric set-up to

provide a powerful consistency check on our identification of the brane Ĵ = 0 = m̂ as the

brane that splits on two NS5-branes.

8. Conclusions

In this paper, we have demonstrated character identities for the N = 2 superconformal

algebra, which lead to the introduction of addition relations for boundary states. We then

showed the appearance of localized bound states in the spectrum of non-compact branes,

both via an analytic and an algebraic approach.

These interesting properties of non-rational N = 2 Liouville theory find applications

in string theory. We analyzed one application in detail, for branes in the background of

NS5-branes spread on a circle. There we showed that the addition relations are reflected

in semi-classical properties of D-branes with three directions transverse to the NS5-branes.

We also gave an exact conformal field theory analysis of the spectrum on these branes,

and showed the appearance of interesting open string bound states localized deep down

the throat of NS5-branes (in a triple scaling limit). We performed a preliminary analysis

of the gauge theory interactions that govern these bound states at low energy.

There remain many interesting open questions related to our work. We mention only

a few interesting routes. The four-dimensional gauge theory we identified deserves more

investigation. The computation of the interactions of the bound states at low energy would

be a useful enterprise. It would also be interesting to apply what we have learned about

N = 2 Liouville theory to configurations that preserve only four supercharges. Another

direction would be the construction of boundary states that do not factorize in terms of

the coset conformal field theories, and find their interpretation in terms of D-branes in

NS5-brane backgrounds. This is presumably related to the problem of giving a mass to

the hyper multiplet living on the non-compact brane, while keeping the vector multiplet

massless. We hope to return to some of these open problems in the near future.
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A. Full Cardy states in N = 2 Liouville

In this appendix we review the detailed construction of the full Cardy states in N =

2 Liouville theory [7], including the couplings to the discrete Ishibashi states. We also

compute the annulus amplitudes for arbitrary discrete branes. We show that discrete

characters appear in the open string channel with multiplicities that are generically not

positive integers.

We carefully normalize our amplitudes and one-point functions as follows. We fix the

normalization of the continuous Ishibashi states such that their overlap is δ(P − P ′). Our
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convention for the normalization of the closed string momentum (and therefore of the δ-

function) is such that J = 1/2 + iP determines the Casimir of an SL(2,R) representation.

We take the δ-function to be the δ-function on the real half-line, namely
∫∞
0 dPδ(P −

P ′)f(P ) = f(P ′) for a function f defined on the positive half-line. Also, we integrate

over Ishibashi states with positive momentum P only. That fixes the normalization of the

one-point functions. In the closed string channel, we will sum over all integer momenta 2m

(modulo 2k).

The continuous and discrete Ishibashi states are defined as:10

e−π
c
3

z2

T c〈〈P,m|prop|P ′,m′〉〉c = δ(P − P ′)δm,m′Chclosed
c (P,m; iT, z) (A.1)

e−π
c
3

z2

T d〈〈J, r|prop|J ′, r′〉〉d = δJ,J ′δr,r′Ch
closed
d (J,m; iT, z) (A.2)

e−π
c
3

z2

T c〈〈P,m|prop|J, r〉〉d = 0 (A.3)

The closed string propagator is:

prop = eπ
c
3

z2

T
e−πTH(c)

eiπz(J0+J̄0) (A.4)

where H(c), J0, J̄0 represent the cylinder Hamiltonian and the U(1)R charge operators.

In section 2.3 we introduced the continuous, discrete and identity branes in N = 2

Liouville theory, and gave their one-point functions to the continuous operators. The

couplings to the discrete operators are:

ψc
P̂ ,m̂

(J, r) = 0 (A.5)

ψd
Ĵ,r̂

(J, r) =
i√
2k

1
√

sin(π(2J−1)
k )

e−4πi
(Ĵ+r̂)(J+r)−(Ĵ−1/2)(J−1/2)

k (A.6)

ψI

m̂(J, r) =

√

2

k

√

sin

(

π(2J − 1)

k

)

e−4πi
2m̂(J+r)

2k . (A.7)

Modular transformations In the computation of annulus amplitudes, modular S-

transformations are needed to switch between the closed string channel and the open

string channel. We give below the relevant modular transformations for the characters of

the extended N = 2 superconformal algebra.

Chclosed
c

(

P,m;−1

τ
,
z

τ

)

=eiπ
c
3

z2

τ
2

k

2k−1
∑

2m′=0

e−4πimm′

k

∫

dP ′ cos

(

4π
PP ′

k

)

Chopen
c (P ′,m′; τ, z)

(A.8)

10We consider only the Ishibashi states associated to extended characters that appear in the modular

transformations of the identity character [7]. In the bulk theory, closed strings states belongs precisely to

these representations [44, 45].
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Chclosed
d

(

J, r;−1

τ
,
z

τ

)

= eiπĉ
z2

τ ×
[

1

k

2k−1
∑

2m′=0

e−4πi (J+r)m′

k

∫

dP ′ cosh(2πP ′ k+1−2J
k )+eiπ2m′

cosh(2πP ′ 2J−1
k )

2| cosh(π(P ′ + im′))|2 Chopen
c (P ′,m′; τ, z)

+
i

k

k−1
∑

r′=0

k
∑

2J ′=2

e−4πi
(J+r)(J′+r′)−(J−

1
2 )(J′

−
1
2 )

k Chopen
d (J ′, r′; τ, z)

+
i

2k

k−1
∑

r′=0

e−4πi
(J+r)(r′+ 1

2 )

k

(

Chopen
d

(

1

2
, r′; τ, z

)

+ Chopen
d

(

k + 1

2
, r′; τ, z

))

]

(A.9)

Chclosed
I

(

m;−1

τ
,
z

τ

)

= eiπĉ
z2

τ ×
[

1

k

2k−1
∑

2m′=0

e−4πimm′

k

∫

dP ′ sinh(2πP
′

k ) sinh(2πP ′)

| cosh(π(P ′ + im′))|2 Chopen
c (P ′,m′; τ, z)

+
2

k

k−1
∑

r′=0

k
∑

2J ′=2

sin

(

π(2J ′ − 1)

k

)

e−4πi
(m(J′+r′)

k Chopen
d (J ′, r′; τ, z)

]

(A.10)

In the bulk of the paper, and in the following computations, we leave the argument τ, z

of the characters implicit but indicate whether we consider the closed or the open string

channel.

Annulus amplitudes We compute the annulus amplitude for open strings stretching

between two branes, taking into account the coupling to discrete operators.

• Identity / any

I〈m̂′|prop|m̂〉I = Chopen
I

(m̂− m̂′) (A.11)

I〈m̂′|prop|P̂ , m̂〉c = Chopen
c (P̂ , m̂− m̂′) (A.12)

I〈m̂′|prop|Ĵ , r̂〉d = Chopen
d (Ĵ , r̂ − m̂′) (A.13)

• Continuous / continuous

This overlap is computed in detail in section 2.5. The result is given by equa-

tions (2.34) and (2.35).

• Continuous / discrete

c〈P̂1, m̂1|prop|Ĵ2 ,̂r2〉d =

∫ ∞

0
dP
[

ρc−d1 (P |P̂1, Ĵ2)Ch
open
c (P, Ĵ2 + r̂2 − m̂1)

+ρc−d2 (P |P̂1, Ĵ2)Ch
open
c (P, Ĵ2 + r̂2 − k − m̂1)

]

(A.14)
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with

ρc−d1 (P |P̂1, Ĵ2) =
2

k

∫ ∞

0
dP ′ cos(4πPP

′

k )

sinh(2πP
′

k ) sinh(2πP ′)

×
∑

ǫ=±1

cosh

(

2πP ′

(

1 +
1 − 2Ĵ2

k
+ iǫ

2P̂1

k

))

(A.15)

ρc−d2 (P |P̂1, Ĵ2) =
2

k

∫ ∞

0
dP ′ cos(4πPP

′

k )

sinh(2πP
′

k ) sinh(2πP ′)

×
∑

ǫ=±1

cosh

(

2πP ′

(

2Ĵ2 − 1

k
+ iǫ

2P̂1

k

))

(A.16)

• Discrete / discrete

d〈Ĵ1, r̂1|prop|Ĵ2, r̂2〉d =

∫ ∞

0
dP

2k−1
∑

2m=0

ρd−d1 (P,m|Ĵ1, r̂1, Ĵ2, r̂2)Ch
open
c (P,m)

+

k−1
∑

r=0

k
∑

2J=2

ρd−d2 (J, r|Ĵ1, r̂1, Ĵ2, r̂2)Ch
open
d (J, r)

+

k−1
∑

r=0

1

2
ρ̃d−d2

(

1

2
, r|Ĵ1, r̂1, Ĵ2, r̂2

)(

Chopen
d

(

1

2
, r

)

+ Chd

(

k + 1

2
, r

))

(A.17)

with

ρd−d1 (P,m|Ĵ1, r̂1, Ĵ2, r̂2) =

∫ ∞

0
dP ′

2k−1
∑

2m′=0

√
2

k
5
2

cos(4πPP
′

k )

sinh(2πP
′

k ) sinh(2πP ′)

×e4πi
m′(−m+(Ĵ1+r̂1)−(Ĵ2+r̂2))

k
1

4| cosh(π(P ′ + im′))|2 ×
(

cosh

(

2πP ′ k + 1 − 2Ĵ2

k

)

+ e2πim
′

cosh

(

2πP ′ 2Ĵ2 − 1

k

)

)

×
(

cosh

(

2πP ′ k + 1 − 2Ĵ1

k

)

+ e−2πim′

cosh

(

2πP ′ 2Ĵ1 − 1

k

)

)

+

k
∑

2J ′=2

k−1
∑

r′=0

1

2k2
e4πi

(J′+r′)(Ĵ1+r̂1−(Ĵ2+r̂2)−m)−(J′
−

1
2 )(Ĵ1−Ĵ2)

k

× cosh(2πP k+2−4J ′

k ) cosh(πP ′)

2| cosh(π(P + im))|2 sin(π 2J ′−1
k )

(A.18)

ρd−d2 (J, r|Ĵ1, r̂1, Ĵ2, r̂2) =
i

2k2

k−1
∑

r′=0

k
∑

2J ′=2

e4πi
(J′+r′)(Ĵ1+r̂1−(Ĵ2+r̂2)−(J+r))+(J′

−
1
2 )(J−

1
2+Ĵ2−Ĵ1)

k

sin(π 2J ′−1
k )

(A.19)
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The spectral density ρd−d2 gives the multiplicity of the discrete characters. The

Cardy condition requires that these multiplicities be positive integers. We can

rewrite ρd−d2 as:

ρd−d2 (J, r|Ĵ1, r̂1, Ĵ2, r̂2) =
i

2k
e−

2πi
k

(Ĵ2+r̂2−Ĵ1−r̂1+J+r)δ

(

Ĵ2+r̂2−Ĵ1−r̂1+J+r ∈ k

2
Z

)

×G(r̂2 − r̂1 + r) (A.20)

where we introduced the function G:

G(N) =
k−1
∑

p=1

e−
2πi
k
p(N+1/2)

sin(π pk )
(A.21)

We now prove by induction that:

G(N) = −i(k − 1) + 2i(N [mod k]) (A.22)

where 0 ≤ N [mod k] < k. First, G(0) = −i(k − 1). Then we write:

e−
2πi
k
p(N+1/2) = −2ie−

2πi
k
pN sin(π

p

k
) + e−

2πi
k
p(N−1/2) (A.23)

so that we can rewrite G(N) in terms of G(N − 1):

G(N) = −2i

k−1
∑

p=1

e−
2πi
k
pN +G(N − 1)

= G(N − 1) + 2i− 2ik δ(N ∈ kZ) (A.24)

This concludes the proof.

Eventually we can write the spectral density ρd−d2 as:

ρd−d2 (J, r|Ĵ1, r̂1, Ĵ2, r̂2) = e−
2πi
k

(Ĵ2+r̂2−Ĵ1−r̂1+J+r)δ

(

Ĵ2+r̂2−Ĵ1−r̂1+J+r ∈ k

2
Z

)

(

k − 1 − 2 [(r̂2 − r̂1 + r)[mod k]]

2k

)

(A.25)

This function is generically not a positive integer. This invalidates the Cardy

condition for discrete branes.

The self-overlap of the continuous brane |Ĵ = 0, r̂〉c. The continuous brane |Ĵ =

0, r̂〉c can be written as the sum of an identity and two discrete branes, according to the

addition relation (2.19). In section 2.5 we computed the self-overlap of the continuous

brane |Ĵ = 0, r̂〉c. We now consider the self-overlap of the sum of branes on the right-hand

side of (2.19):
(

I〈r̂| + d〈Ĵ = k/2, r̂| + d〈Ĵ = 1, r̂ − 1|
)

prop
(

|r̂〈I+|Ĵ = k/2, r̂〉d + |Ĵ = 1, r̂ − 1〉d
)

= Chopen
I

(0) + 2Chopen
d (k/2, 0) + 2Chopen

d (1, 0)

+
(

d〈Ĵ = k/2, r̂| + d〈Ĵ = 1, r̂ − 1|
)

prop
(

|Ĵ = k/2, r̂〉d + |Ĵ = 1, r̂ − 1〉d
)

(A.26)
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Let’s compute the contribution to the discrete characters of the overlap of the discrete

branes:

d〈Ĵ = k/2, r̂|prop|Ĵ = k/2, r̂〉d = d〈Ĵ = 1, r̂ − 1|prop|Ĵ = 1, r̂ − 1〉d

=

k
∑

2J=2

(

k−1−2[−J [mod k]]

2k
Chopen

d (J,−J)− k−1−2[k/2−J [mod k]]

2k
Chopen

d (J, k/2−J)

)

+ continuous (A.27)

d〈Ĵ = k/2, r̂|prop|Ĵ = 1, r̂−1〉d =
k
∑

2J=2

(

−k−1−2{[−J [mod k]]−1[mod k]}
2k

Chopen
d (J,−J)

+
k − 1 − 2[k/2 − J − 1[mod k]]

2k
Chopen

d (J, k/2 − J)

)

+ continuous (A.28)

d〈Ĵ = 1, r̂−1|prop|Ĵ = k/2, r̂〉d =

k
∑

2J=2

(

−k−1−2 {[−J [mod k]]+1[mod k]}
2k

Chopen
d (J,−J)

+
k − 1 − 2[k/2 − J + 1[mod k]]

2k
Chopen

d (J, k/2 − J)

)

+ continuous (A.29)

Which gives (for k 6= 1):
(

d〈Ĵ = k/2, r̂| + d〈Ĵ = 1, r̂ − 1|
)

prop
(

|Ĵ = k/2, r̂〉d + |Ĵ = 1, r̂ − 1〉d
)

= −Chopen
d (1,−1) − Chopen

d (k/2, 0) + continuous (A.30)

Thus we recover the result (2.36), with the correct multiplicity one for the discrete char-

acters:

〈P = i/2,M = 0|P = i/2,M = 0〉 = Chopen
d (1,−1)+Chopen

d (k/2, 0)+Chopen
I

(0)+continuous

(A.31)

In the special case k = 1, the overlap of discrete branes contains only continuous rep-

resentations. As a consequence the discrete characters in the overlap of the continuous

brane (A.31) appear with multiplicity two. This is also what we found in section 2.5 of the

bulk of the paper.

B. The example of k = 3 NS5-branes

To make the formulas for the annulus partition function for open strings ending on a

continuous Ĵ = 0 brane on one side and an identity brane on the other side more concrete,

we discuss one example in detail (beyond the case of k = 2 NS5-branes treated in more

detail in [23]). We concentrate on k = 3 Neveu-Schwarz five-branes. To get to grips with the

ingredients of the partition function, we need to compute the relevant superparafermionic

characters. They are given by [46]:

χ(j, n, s; τ, z) =
∑

p mod k−2

c2jn+4p−s(τ)Θ2n+(4p−s)k,2(k−2)k

(

τ,
2(k − 2)z

k

)

(B.1)
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and the character is zero when 2j + n + s 6= 0 [mod2]. For k = 3 NS5-branes we have

a bosonic SU(2) level kbos = 1. Since we also have the equivalence relation (j, n, s) ≡
(kbos

2 − j, s + 2, n + k), we can restrict ourselves to characters with j = 0. Using identities

between string functions [47] that implies that we will only need the string function c00
(defined in [48]). Moreover, we sum over p modulo one, so we can set p = 0. We find the

identity:

χ(j, n, s; τ, z) = c0n−s(τ)Θ2n−3s,6(τ, z
1
3 ) (B.2)

where n = s (mod 2) to have a non-zero result. We are left with twelve non-trivial super-

coset characters that can be labeled by n − 3s (mod12). We find the conformal weights

and R-charges for the primaries in these representations of the superconformal algebra at

c = 3 − 6
3 = 1 (see also [31] appendix F):

h QMM

0 0

1/24 ±1/6

1/6 ±1/3

3/8 ±1/2

2/3 ±2/3

25/24 ±5/6

3/2 ±1

(B.3)

Note that in the case of highest conformal weight, we have two degenerate ground states,

which explains the fact that we have thirteen entries in the table. We recall that the

minimal model U(1)R charge is given by the formula QMM = s
2 − n

k . To compute the

partition function, we compute the separate terms in the sum:

Z(k=3) =
1

2
(ZNS − ZÑS) − 1

2
(ZR ∓ ZR̃). (B.4)

Let’s concentrate on the first term:

ZNS =
θ2
3(τ)

η(q)6
×

((χ(0, 0, 0) + χ(0, 0, 2))ChNSc (J = 0, 2m = 0)

+(χ(0, 2, 0) + χ(0, 2, 2))ChNSc (J = 0, 2m = 4)

+(χ(0, 4, 0) + χ(0, 4, 2))ChNSc (J = 0, 2m = 2)). (B.5)

The factors corresponding to the minimal model and the non-compact model will contain

the following states. The first term contains a ground state at h − c/24 = −1/2. At

h − c/24 = −1/4 the first term also contains one state each of U(1)R charge ±1. The

second term contains one such state with U(1)R charge −1 and the third term one state

with U(1)R charge +1. When combined with the flat space factor:

θ2
3(τ)

η(q)6
= q−1/4 + (2z−1 + 2z)q1/4 + . . .
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we get on the one hand the 4 bosonic states with charges ±1 from the identity in the non-

trivial factors, and the second term for the flat space factors. This is the vector multiplet.

On the other hand, we can take the trivial factor in flat space-time, and we get 2 states

from the excited levels of the first character as well as two states from the ground states

of the second and third term.

= q−1/2 + (4z−1 + 4z)q0 + (6z−2 + 24 + 6z2)q
1
2 + (4z−3 + 60z−1 + 60z + 4z3)q1 + . . .

After GSO projection, we will be left with only the first term, which gives rise to eight

massless bosonic states. These correspond to the primaries ψ2,3,4,5
−1/2 acting on the ground

state in the non-trivial factors, as well as the following four states (indicated by their

U(1)R charges and dimension in the first and second factor conformal field theory, in the

second and third line):

G±,nc
−1/2|0 >

(+1/6,−1/3) ⊗ (+1/3,−2/3)

(+1/6,+1/3) ⊗ (+1/3,+2/3) (B.6)

These are the massless states that we identified in the annulus partition function in the

bulk of the paper (when we put k = 3 in those formulas). To complete the exercise, we

quote the Ramond sector partition function (suppressing the z-dependence):

ZR = 16q0 + 256q1 + . . .

which precisely cancels the NS contribution. The cancellation is a particular application of

a large class of identities between superconformal characters that were proven on the basis

of the spectral flow argument of Gepner adapted to the open string channel in an appendix

to [23].
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